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Abstract

This thesis presents techniques to investigate transactions in uncharted cryptocur-

rencies and services. Cryptocurrencies are used to securely send payments on-

line. Payments via the first cryptocurrency, Bitcoin, use pseudonymous addresses

that have limited privacy and anonymity guarantees. Research has shown that this

pseudonymity can be broken, allowing users to be tracked using clustering and tag-

ging heuristics. Such tracking allows crimes to be investigated. If a user has coins

stolen, investigators can track addresses to identify the destination of the coins.

This, combined with an explosion in the popularity of blockchain, has led to a

vast increase in new coins and services. These offer new features ranging from

coins focused on increased anonymity to scams shrouded as smart contracts. In

this study, we investigated the extent to which transaction privacy has improved and

whether users can still be tracked in these new ecosystems. We began by analysing

the privacy-focused coin Zcash, a Bitcoin-forked cryptocurrency, that is consid-

ered to have strong anonymity properties due to its background in cryptographic

research. We revealed that the user anonymity set can be considerably reduced

using heuristics based on usage patterns. Next, we analysed cross-chain transac-

tions collected from the exchange ShapeShift, revealing that users can be tracked

as they move across different ledgers. Finally, we present a measurement study on

the smart-contract pyramid scheme Forsage, a scam that cycled $267 million USD

(of Ethereum) within its first year, showing that at least 88% of the participants in

the scheme suffered a loss. The significance of this study is the revelation that users

can be tracked in newer cryptocurrencies and services by using our new heuristics,

which informs those conducting investigations and developing these technologies.
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The work presented in this thesis is intended to inform those conducting cryp-

tocurrency investigations and may facilitate the design and development of projects

within distributed ledger ecosystems, particularly with respect to privacy and secu-

rity.

The work shown in Chapter 4 was responsibly disclosed to the founders of

Zcash, who responded with updated privacy recommendations and best practices

for users [154, 161]. It was covered by multiple media outlets [1, 21, 39, 51] and is

mentioned in the later revisions of the Zcash protocol specification [70].

The work in Chapter 5 was responsibly disclosed to ShapeShift and was cov-

ered by the MIT Technology Review[113]. The work introduces new tracing heuris-

tics and highlights criminal activity with case studies. These heuristics can be ap-

plied not just to ShapeShift, but to platforms which offer cross-currency trading.

Weeks before we published the research, The Wall Street Journal published an in-

vestigation into ShapeShift which paralleled our work [135], and which was re-

sponded to by ShapeShift’s CEO[46]. When the work was originally published,

the ShapeShift exchange did not have a Know-Your-Customer (KYC)/Anti-money

laundering policy, however this has since been introduced.

The analysis in Chapter 6 will inform those investigating cryptocurrency

scams. The work presents a multi-angled analysis of a large pyramid scheme oper-

ating on the Ethereum cryptocurrency. Since publication, we have been contacted

by a law enforcement investigator requesting advice on how to proceed with active

investigations on similar scams.

All the work published in this thesis has been uploaded to open conference
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proceedings and open access repositories. As of November 27, 2021 the work in

this thesis had over 147 citations. The relevant source code for each project has

been shared publicly to Github [118]. Talks at each of the conference proceedings

are freely available to view online. This will facilitate impact for those researching

into improving privacy and combatting scams in distributed ledgers.
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Chapter 1

Introduction

Bitcoin alleviates the problems of centralisation and censorship within a financial

system. Anyone has the freedom to create a cryptocurrency wallet and have coins

sent to them, simply by providing their public key. No user identification, passport

or verification is needed to create such a wallet. This bypasses traditional financial

Know Your Customer (KYC) principles, which inform a set of rules used by fi-

nancial services in order to identify users prior to conducting business, and thereby

anticipate and prevent crime. With this freedom, coins can be freely sent to any

address without discrimination and free from censorship. These coins cannot be re-

turned or reversed (unless the new owner explicitly does so). By default the system

offers pseudonymity, as mentioned in the Bitcoin white paper, transaction privacy

is supposedly preserved [107].

Notably, users in oppressed circumstances can purchase and freely send coins

without the fear of banks or governments impeding the transaction, and have done

so with Bitcoin [13, 126]. There is no risk from hyper-inflation as there is only a

fixed number of mintable coins. Donations to charitable organisations can be made

without the sender revealing who they are [16, 75]. However, such a system has

flaws, and some may argue that those flaws are within its pseudonymity, which

allows users to obscure their identity.

For some, this acts as a layer of privacy, preventing their financial transactions

from being monitored. For others, this acts as a shroud which allows them to con-

ceal their crimes, such as stealing coins or selling illegitimate goods. Such crimes
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may need to be investigated. For example, a victim wants to track coins stolen from

them to discover if they were sent to an exchange, in the hopes of identifying the

criminal and collecting their funds. However, if KYC has not been adopted by that

particular exchange, it is much more difficult to discover the identity of the criminal.

Alternatively, cryptocurrency exchanges may want to ensure the coins they accept

from users were neither stolen nor gained nefariously. These instances, amongst

many others, illustrate the need to be able to track coins.

Scientific research has shown that Bitcoin is not private, and entities can be

identified and tracked through the use of clustering and wallet identification tech-

niques [64, 96, 110, 124]. This, combined with the openness of the Bitcoin source

code, has inspired others to create so called privacy coins. Privacy coins are alter-

native cryptocurrencies to Bitcoin which improve the underlying user privacy with

new features. For example: Zcash has introduced the notion of a shielded pool

which uses zero-knowledge proofs to obscure the properties of transactions [160];

Dash uses Coinjoins (as PrivateSpend) which allows users to perform transactions

together, to make it difficult to identify which sender paid which recipient [42, 92];

and Monero uses ring signatures to create mix-ins allowing users to include keys of

other users within their own transaction to increase their anonymity set [102, 109].

Parallel to privacy coins, the ecosystem has seen an introduction in compa-

nies allowing users to freely trade between different coins. July 2014 saw the an-

nouncement of cryptocurrency exchange ShapeShift, a service that allowed users

to trade coins across different cryptocurrency ledgers without the need for KYC.

The service officially launched in 2015, and for the first three years operated with-

out any identity checks, until forced to do so by regulators [151]. In 2017, the

Wannacry ransomware hackers reportedly used ShapeShift to move their illicitly

acquired cryptocurrencies [43].

With respect to privacy coins, one should also ask whether the claims by the

developers of these hold true. Given the avenue for cross-currency trading and

potential for crime, one must ask whether cross-currency trading has any affect on

user privacy.
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The advancements of cryptocurrency technology has resulted in an increase in

new coins and services in the ecosystem. As of June 15, 2021, CoinMarketCap lists

over 10,000 different cryptocurrencies [40]. Given these opportunities, criminals

are quick to exploit new technologies to scam those who are not as technologically

literate. For example, Bitconnect, a ponzi scheme, was introduced in 2016 and

sold a blockchain-based coin that claimed to offer a high rate of return [50, 73].

The scheme was ultimately closed after regulators ruled that it was a scam, causing

the value of the coin to tumble by 92% [4]. Similarly Wotoken, a ponzi scheme

claiming large profits due to advanced trading bots, raised over $1.1 billion USD

before being shutdown by law enforcement [62]. As scams continue to appear, it

becomes important to understand the magnitude and dynamics of these schemes.

In this thesis, we empirically analyse transactions in new cryptocurrencies

and services. We investigate transaction privacy on the blockchain by empiri-

cally measuring the privacy coin Zcash, developing strategies to trace coins on

the cross-trading service ShapeShift, and reveal the scale of a modern day smart-

contract pyramid scheme, Forsage. We question whether coins offer the privacy

they promise and, if not, what techniques can be introduced to defeat them.

1.1 Scope and Contributions

Our study analysed public transactions that occurred on-chain within the pub-

lic ledger. Off-chain privacy, for example in software such as the lightning net-

work [120] (an off-chain payment protocol), has been implemented but was beyond

the scope of this research. At the start of this study there was no evidence of any

published techniques that analysed Zcash [80], cross-currency trading [159] or thor-

oughly investigated pyramid schemes in cryptocurrencies [82].

First, this work offers the reader a foundation in (Chapter 2). We start with

presenting a background on cryptocurrencies, in particular Bitcoin and its relevant

components. Then we explain the anonymity of Bitcoin and state-of-the-art tech-

niques used to defeat anonymity/privacy via address clustering, along with counter-

measures proposed by the community. We end with some of the core concepts used
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in privacy coins.

In Chapter 3 we present a literature review of the ecosystem. We start with

an overview of the research that preceded cryptocurrencies. We then discuss the

literature used to defeat and improve anonymity in both Bitcoin and privacy coins

and end with a review of the various aspects of crime in the blockchain ecosystem.

Our first contribution to analysing transaction privacy is presented in Chap-

ter 4. Here we analyse the privacy coin Zcash, finding that address clustering and

tagging is a very viable technique, privacy guarantees are severely limited due to a

small anonymity set, and users perform unwise transactions with traceable patterns

that damage the privacy of themselves and others. We end with a case study of a

prominent hacker collective that used the coin to sell security vulnerabilities.

With the rise of alternative cryptocurrencies, exchanges began to provide trad-

ing services, allowing users to directly swap coins between different cryptocurren-

cies. In Chapter 5 we present one of the first academic analyses of cross-currency

trading. We show techniques for tracing users moving across chains, heuristics

clustering cross-chain user addresses and multiple case studies showcasing crimi-

nal use.

Having been around for over a century, pyramid schemes have scammed users

out of billions of dollars [65]. In Chapter 6 we contribute to other analyses of this

crime in blockchain and present an in-depth empirical study of Forsage, a smart-

contract pyramid scheme on Ethereum. We explain how the obfuscated smart con-

tract , using a purpose-built transaction simulator, quantify the gains and losses, and

study the promotional videos showing how the promoters leverage the new technol-

ogy of smart contracts to lure users.

The question that then arises is about who are the ’others’ who would imple-

ment such work. We define ’others’ as the following; Fellow scientists who discover

and implement mediation’s which would improve user privacy, thus thwarting our

attacks. Scientists who produce follow-up work with even more attacks, as well

as investigators who use our heuristics to measure risk in their services, or trace

transactions to combat crime.
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1.2 Included Work
Parts of this thesis have been published in the following papers. All papers are joint

work unless otherwise stated.

• George Kappos, Haaroon Yousaf, Mary Maller, and Sarah Meiklejohn.

An Empirical Analysis of Anonymity in Zcash. In 27th USENIX

Security Symposium (USENIX Security 18), pages 463–477, Balti-

more, MD, 8 2018, USENIX Association, https://www.usenix.org/

conference/usenixsecurity18/presentation/kappos. Source code: https:

//github.com/manganese/zcash-empirical-analysis/. Included in Chap-

ter 4.

• Haaroon Yousaf, George Kappos, and Sarah Meiklejohn. Tracing Trans-

actions Across Cryptocurrency Ledgers. In 28th USENIX Security Sym-

posium (USENIX Security 19), pages 837–850, Santa Clara, CA, 8

2019. USENIX Association. Paper: https://www.usenix.org/conference/

usenixsecurity19/presentation/yousaf. Source code: https://github.com/

manganese/tracingTransactionsAcrossCryptocurrencyLedgers. In-

cluded in Chapter 5.

Other parts of the thesis are under submission to conferences, and have been

published in pre-print.

• Tyler Kell, Haaroon Yousaf, Sarah Allen, Sarah Meiklejohn and Ari Juels.

Forsage: Anatomy of a Smart-Contract Pyramid Scheme. In: arXiv preprint

arXiv:2105.04380, 2021. Paper: https://arxiv.org/abs/2105.04380. Source

code: https://github.com/initc3/forsage. Included in Chapter 6.

1.3 Additional Work
The following papers were published, as part of my research, and are not included

in this thesis.

• George Kappos, Haaroon Yousaf, Ania M. Piotrowska, Sanket Kanjalkar,

Sergi Delgado-Segura, Andrew Miller, and Sarah Meiklejohn. An Empiri-

https://www.usenix.org/conference/usenixsecurity18/presentation/kappos
https://www.usenix.org/conference/usenixsecurity18/presentation/kappos
https://github.com/manganese/zcash-empirical-analysis/
https://github.com/manganese/zcash-empirical-analysis/
https://www.usenix.org/conference/usenixsecurity19/presentation/yousaf
https://www.usenix.org/conference/usenixsecurity19/presentation/yousaf
https://github.com/manganese/tracingTransactionsAcrossCryptocurrencyLedgers
https://github.com/manganese/tracingTransactionsAcrossCryptocurrencyLedgers
https://arxiv.org/abs/2105.04380
https://github.com/initc3/forsage
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cal Analysis of Privacy in the Lightning Network. In International Confer-

ence on Financial Cryptography and Data Security. Springer, 2021. Paper:

https://fc21.ifca.ai/papers/130.pdf.

• Pierre Reibel, Haaroon Yousaf, and Sarah Meiklejohn. Short Paper: An

Exploration of Code Diversity in the Cryptocurrency Landscape. In Inter-

national Conference on Financial Cryptography and Data Security, pages

73–83. Springer, 2019. Paper: http://fc19.ifca.ai/preproceedings/134-

preproceedings.pdf.

• George Kappos, Haaroon Yousaf, Rainer Stuetz, Sofia Rollet, Bernhard Hasl-

hofer and Sarah Meiklejohn. How to Peel a Million: Validating and Ex-

panding Bitcoin Clusters. In USENIX Security Symposium 2022.https:

//www.haaroonyousaf.com/files/how to peel.pdf.

1.4 Work Done in Collaboration
A large part of the work in this thesis was completed in collaboration with re-

searchers across the globe, all of whom are listed in Section 1.2.

In Chapter 4, Sarah Meiklejohn discovered that the Zcash shielded pool was

leaking non-trivial information that could damage the privacy of users. I managed

and processed blockchain data used for the project, general statistics, tagging anal-

ysis and leading the case study on the hacker collective with Mary Maller. Joint

work includes the clustering heuristic with Sarah Meiklejohn and tag collection with

Mary Maller. George Kappos analysed the interactions with the pool and shielded

pool.

In Chapter 5, I wrote the scraping tool to collect all data (including all

blockchain nodes and exchanges), statistics, cross-currency tracing via pass-through

and patterns of ShapeShift Usage (excluding Trading bots). With regards to joint

work, all authors contributed to identifying blockchain transactions and I worked on

the clustering analysis with Sarah Meiklejohn. George Kappos worked on tracking

cross-currency u-turns, round trip and the trading bots.

https://fc21.ifca.ai/papers/130.pdf
http://fc19.ifca.ai/preproceedings/134-preproceedings.pdf
http://fc19.ifca.ai/preproceedings/134-preproceedings.pdf
https://www.haaroonyousaf.com/files/how_to_peel.pdf
https://www.haaroonyousaf.com/files/how_to_peel.pdf
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In Chapter 6, I processed the data from the Ethereum nodes and performed

the contract measurements study. All authors contributed to the proposed solutions.

Tyler Kell worked on contract deconstruction. Sarah Allen and Tyler Kell worked

on the community-dynamics study.

With regards to work not included in this thesis. In the paper, Why is a Raven-

coin Like a TokenDesk? An Exploration of Code Diversity in the Cryptocurrency

Landscape [123], I came up with the study and proposed the breakdown of work.

Sarah Meiklejohn led and wrote the paper and worked with Pierre Rebel who per-

formed the scraping and analysis.

In the paper, An Empirical Analysis of Privacy in the Lightning Network [81], I

ran and managed our Bitcoin and lightning nodes, created and performed the prop-

erty heuristic and extended the previous version of the balance discovery attack

based upon the original from Sergi Delgado-Segura.

In the paper, How to Peel a Million: Validating and Expanding Bitcoin Clus-

ters [kappos2022], I worked on identifying the transaction and address features,

and jointly worked on the algorithms with George Kappos.



Chapter 2

Background

2.1 Cryptocurrencies
This chapter details the basic components needed to gain an understanding of cryp-

tocurrencies.

2.1.1 Bitcoin

The first decentralised electronic cryptocurrency, Bitcoin, was created by Satoshi

Nakamoto in 2008 [107]. A white paper explaining the architecture and design was

originally sent as a link to the metzdowd cryptography email list in October 2008,

and was shortly followed by the release of Bitcoin open source software in January

2009 [106]. That paper lays the foundation for a decentralised financial system

through a digital asset class called cryptocurrencies.

By definition, cryptocurrencies are a form of digital currency coupled with

cryptography and a blockchain. A blockchain is a distributed ledger which contains

a record of all transactions. In Bitcoin, the complete record is public, viewable and

verifiable by all participants and thus reduces the need for a central authority. All

participants can choose to have a copy of the ledger, allowing it to be decentralised.

Public key cryptography is used in Bitcoin to maintain the integrity and authenticity

of each transaction.

Digital coins are used as a medium of exchange and allowed to be freely traded

between users without fear of censorship. All coins are stored in wallets each of

which has one or many public key(s), or wallet address(es), and has one or many
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private key(s). Users can generate as many wallets and keys as needed, without the

requirement for any verification of identity.

Coin minting and supply is fixed within the protocol, and awarded to users who

maintain security by mining. Transaction finality is protected by this consensus of

miners.

This was the first system of its kind that allows users to transfer digital cash

without the fear of double spending and need for any intermediaries, effectively a

non-custodial, trustless and decentralised global payments network. On 8th Novem-

ber 2021, the value of Bitcoin soared to the highest currently recorded: $67,566.83

USD per Bitcoin. This innovation has led to the development of new research fields

and new cryptocurrencies (e.g., Ethereum, ZCash and Monero). According to Coin-

MarketCap, as of November 27th 2021 there are over 14,000 cryptocurrencies with

a total market capitalisation of 2.4 trillion USD [40].

2.1.2 Blockchain components

In this section we explore the core foundational components used in blockchain

technologies. We begin with Keys and Wallets which are responsible for holding,

sending and receiving coins. Then we discuss the format of transactions which

are used to send and receive coins. Finally, we discuss the structure of blocks and

role of miners. Further information about the cryptography can be found in various

textbooks [23, 108].

Keys and Wallets

Bitcoin’s foundation is built with its use of public key cryptography. This allows

the user to create two related but different keys: a private key and a (derived) public

key.

The private key is the secret component that controls and signs transactions,

akin to a bank PIN code which is used to authorise money that is spent. However,

unlike a PIN code, the private key also acts as the vault to store coins, and if leaked

allows all coins to be compromised. If a user looses their private key, this would

also mean a loss of access to the coins belonging to that key.
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Public keys are derived from private keys. These are the user’s Bitcoin

address and digital fingerprint, with workings akin to a bank account number.

19Yq6pRM3mRUZMbWZoBpRWhNehiQHqznGR is an example of a public key

used in Bitcoin. Users send coins to public keys, similar to the way in which

cash is transferred to bank account numbers. When sending coins, the user must

sign the transaction with a unique signature created from the associated private key.

The transaction, signature and public address combination is then verified by users

of the network to ensure the user owns the coins being spent. Both keys, pub-

lic and private, are generated using the Elliptic Curve Digital Signature Algorithm

(ECDSA) [76]. Key management is performed via digital wallets. Just like a phys-

ical wallet which can hold one or more cards/cash, digital wallets hold private and

public keys. The wallet is controlled by the software the user chooses to run, for

example in Bitcoin this is done via the bitcoind program.

A user can spend funds from multiple private keys in the same transaction,

and thus signs the transaction which each of the corresponding keys. The signature

is stored within the transaction inside the input field, which allows the network to

verify that the coins have been rightly spent. Keys are pseudonymous and are not

tied to any physical identity. However, if the identity of a public key is revealed,

then blockchain analytics and heuristics can be used to identify all transactions that

involved the said key, thus tying and identifying the financial habits of the user.

Transactions

A transaction is the structure used to transfer coins. It has inputs, outputs and fea-

tures. Inputs are the addresses from which coins are received, and outputs are ad-

dresses to which coins are sent. The number of inputs and outputs is determined by

the user, but there must be at least one input and one output in a transaction. Fea-

tures are attributes on transactions which trigger certain conditions. For example, a

Bitcoin transaction can set a feature called locktime which means the transaction is

only valid once the specific time has passed.

Figure 2.1 illustrates a simple example of a two input and one output trans-

action. On the input side, two addresses 1Gy9Qp... and 1By7Qp... are sending
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1Gy9Qp… 250.0 BTC
16uPnr… 550.0 BTC

Sender 
address

Amount 
sent

Receiver 
address

Amount 
received

Inputs Outputs

1By7Qp… 300.0 BTC

…

…

Signature

Figure 2.1: A simple diagram illustrating a transaction. The left side shows two inputs
sending 250 and 300 BTC respectively. Each is attached with a signature that
proves the coins were spent by the senders and can be used by the network
to verify the transaction. The right side shows a single output receiving these
coins.

250 BTC and 300 BTC respectively to address 16uPnr..., the output. In this in-

stance a single entity may own both of the input addresses or it may be two users

performing a transaction together to send coins to the same recipient. Only public

addresses are shown on the blockchain and only public addresses are used to send

and receive coins. The sending user(s) sign the transaction with the corresponding

private key. This produces signature(s) to be included within the transaction to al-

low for verification. Once the transaction is confirmed and verified by the network,

it is stored on the blockchain within blocks.

In order to maintain security and incentivise miners to validate and publish

transactions, users can optionally add a transaction fee. This fee represents a portion

of the bitcoins transferred, calculated by deducting the total bitcoins in the output

the total bitcoins in the input. The fee is collected by the miner who publishes the

transaction onto the chain. As space within a block is limited, miners can choose the

transactions they would like to include in their block. Thus, there is an economic

incentive to choose transactions with high fees. This creates a market for transaction

fees, and thus users must be aware of the current fees being accepted to ensure their

transaction is published.

Blocks and Miners

A block is a data structure that contains both a header and block data. The data in a

block is made of newly confirmed transactions (can hold zero or more transactions).

The header contains block metadata and a cryptographic hash of the previous block.
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Header

Data
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Figure 2.2: A simple diagram illustrating a block chain.

As shown in Figure 2.2, multiple blocks are chained together with their respective

hashes forming a block chain. This is akin to a linked list, using hash pointers

instead of traditional pointers.

As Bitcoin is an append-only ledger, the cryptographic hash pointers of previ-

ous blocks are a vital and necessary core component of maintaining security. Any

modification to the data in any part of the chain changes the cryptographic hash

of the modified block, subsequently causing all following hashes to change. Thus,

data is only appended to the end in the form of new blocks. Each block is stamped

with a block number indicating its position in the chain. This, combined with the

chain of hashes, makes blocks immutable to change.

All blocks are created (in blockchain terminology mined) by miners who fol-

low the Nakamoto consensus [107]. One part is a proof-of-work (PoW) algorithm

which uses a set of rules that govern the network and the another is the heavy em-

phasis on following the longest chain.

In the case of Bitcoin, miners solve a difficult mathematical puzzle in return

for the reward of newly minted coins and transaction fees. This ensures that nodes

generate proof to show they have spent some computational power/energy. The

difficulty of the puzzle prevent miners from spamming the network with fake blocks

to quickly obtain new coins/fees as puzzle solutions require some computational

power to generate but are very easy to verify. This allows block generation and

transaction confirmation to be secure and decentralised within a trustless network,

as trust is obtained from verifying a miners puzzle and the process incentivizes

nodes to behave honestly in order to obtain the rewards.

In Bitcoin proof-of-work, the puzzles are difficult to solve, easy to verify and

have varying levels of difficulty depending on the overall power of the network, with
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the answer to the puzzle being a hash within the target difficulty. To generate this

hash, miners use the hash of the previous block, data from transactions they choose

to validate, a time stamp and a nonce. The nonce is the value that is iterated in order

to find the hash. Once found, the miner then enters their public key and pushes the

block to the network. Full nodes in the network verify the block contents and the

answer to the puzzle. If no issues are found, this new block is added to their chain,

the miner earns the reward containing both newly minted coins and transaction fees

from pending transactions they included (which are now marked as confirmed) and

the entire process repeats. Rewards and fees act as incentives for miners to follow

the rules and participate in the network.

On average this routine takes 10 minutes which provides proof that the majority

of the power in the network participated. In the case where two miners find a block

at the same time, causing a chain split, the miners are all programmed to follow the

longest chain which removes the need for a third party to direct the system. The

system is protected against double spend attacks, as the attackers would require

more than 50% of the network hash power to take control of the chain.

The longest chain rule, states that nodes in the network must follow and build

upon the blockchain with the most blocks as this is the most legitimate as it has had

the most computational power spent upon it. New users in the network simply fol-

low the longest chain and begin to mine on top of it, allowing users to join and leave

the network without having any negative impacts. This also prevents the network

from needing to delegate authority, as by default all nodes follow the authority of

the longest chain.

2.1.3 Accounting models

In this section we explain the two accounting models used in the blockchain tech-

nologies we explored, these being the Unspent Transaction Output model (used in

systems such as Bitcoin, Dash and Zcash) and Account-based model (used in smart-

contract based cryptocurrencies such as Ethereum).



2.1. Cryptocurrencies 27

Unspent Transaction Output

In the Unspent Transaction Output (UTXO) accounting model transactions have

one or more inputs and one or more outputs. The outputs determine the receiving

amount (the coins) and condition. Each output is a UTXO.

The receiving condition is a script, that when true, allows the coins to be spent.

In Bitcoin, one example of this script consists of the address of the recipient who can

spend the coins, provided they can sign the follow-on transaction with the associated

private key. At a high level, this output is seen simply as the address. For example,

a user who mined a block would receive newly minted coins sent to a script only

redeemable with their address. To spend this coin, the user must turn this into an

input within a new transaction.

The input contains a signature which proves the corresponding output to be

true. For example, a user wants to send their newly minted coins to a cryptocurrency

exchange. With their private key they create a signature that solves the script that

was sent to them, thus allowing them to spend their coins, and also marking the

output as spent. With this they repeat the process by creating a new output with

the recipient amount and condition. The spent input combined with the new output

creates a transaction.

Inputs cannot be split; when spent, the entire input is used. This ensures that

each is spent only once. If users want to partially spend their UTXO, they would

create an additional change output to themselves. This process of change is usually

handled by the wallet software. This process is akin to spending physical cash. For

example, to spend a £20 note one must give the note in its whole physical form to

the recipient, who then keeps the note and in exchange returns any change. One

does not physically tear a note.

Figure 2.3 shows a high level diagram of three UTXO-based transactions.

Here, user Alice has received two transactions: Transaction A with newly minted

coins sent to address 16uPnr... and Transaction B with 5 BTC sent to her second

address 14uPnr.... She spends both of these in Transaction C by spending both as

inputs, sending 7 BTC to Bob 1Fy7Qp... and the remainder to herself as change.
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Coinbase 16uPnr… 10 BTC
Outputs

16uPnr… 7  BTC
Inputs

1Fy7Qp…

1Gy9Qp… 14uPnr… 5  BTC
OutputsInputs

14uPnr…
Inputs Outputs

16uPnr… 8  BTC
Previous 
UTXO

Transaction A

Transaction B

Transaction C

Figure 2.3: A diagram illustrating UTXO transactions.

The UTXO model ensures that no user is able to double spend, as every UTXO

can only be spent once and must be completely used. Users can spend UTXOs

independently of one another. The network can determine who owns what coins by

simply taking a list of all UTXOs. From an analytics perspective, UTXOs make it

easier for users to trace coins to their source.

Account-Based

Account-based models are an alternative and used in cryptocurrencies such as

Ethereum, a smart-contract-based blockchain. An address acts as an account (with

a private and public key) and coins are deposited directly to the address. Accounts

have a balance and keep a record of all transactions. In Ethereum, accounts can be

controlled by a user or by code within a smart-contract.

When a user wants to send funds, the transaction reduces their (sender) balance

and increases the recipient’s balance. Each account has a public nonce which acts as

a protection against malicious users attempting to replay transactions. This nonce is

incremented and attached to each transaction sent from the sending account. Com-

pared to UTXOs, coins in accounts can be split and do not need to be fully spent.

This means account-based blockchains do not create change as in Bitcoin.

2.2 Anonymity
As previously mentioned, Bitcoin is designed to operate with pseudonymity on an

open ledger that maintains the public history of all transactions. This transparency

allows transactions to be monitored. By analysing transaction patterns, researchers

have created heuristics able to reduce the effectiveness of pseudonymity by linking

transactions and addresses to real world entities.
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2.2.1 Multi-input heuristic

A multi-input (also known as co-spend or clustering) heuristic is the foundational

process used to cluster Bitcoin addresses, linking together addresses that may be

owned by the same entity. This, when combined with address tagging, reveals the

real world identity behind the transactions. The effectiveness of this technique has

been demonstrated by many researchers [8, 96, 124, 127] and has formed the basis

for commercial cryptocurrency analytics and surveillance companies (e.g., Chainal-

ysis and Elliptic).

A user must have access to the private key in order to spend coins. Inputs in

a transaction are spent as the owner(s) signs the transaction(s). It can therefore be

deduced that addresses spent together in the same inputs are probably owned or at

least controlled by the same entity. By cascading this process across all transactions,

one is left with clusters of addresses that have been used together.

A

B
Tx1

B

C
Tx2

D

E
Tx3

A

B
Tx1

B

C
Tx2

D

E
Tx3

Input Address Transaction

Before

After

Figure 2.4: Colouring nodes based upon the multi-input heuristic.

Figure 2.4 shows a visual example of this process, with three transactions that

each have two input addresses. Before, we can see unclustered transactions, indi-

cated by a white circle. To conduct the heuristic we execute the following steps. We

look at the inputs of the first transaction and label these addresses, A and B, with the

colour orange. In the next transaction, we look at the inputs and check if they have

been coloured (allocated a cluster) before, if so we give them the existing colour,

if not we assign a new colour. In this instance the second transaction has input B,
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which was labelled previously. Thus these inputs are given the colour orange. We

repeat this process until all transactions have been labelled. Finally, we can see that

in the final transaction input addresses D and E have not been labelled before and

are given a new colour, cyan. This completes the heuristic and the ”after” section

shows the final result containing two clusters, cluster orange with addresses A, B

and C and cluster cyan with addresses D and E.

In practise this algorithm can be modelled in a number of ways. The method

mentioned above is akin to the disjoint set (union find) algorithm [127]. Alterna-

tively this can be modelled by extracting clusters from connected components [129]

within a graph, where nodes are addresses and are connected by edges to other

nodes if they were involved as inputs in a transaction.

2.2.2 Countermeasures

A variety of counter-measures have arisen since the development of the clustering

heuristic, namely coin mixing and privacy coins.

Mixing is the process of combining coins with users to attain increased pri-

vacy and anonymity. CoinJoin, a form of mixing, was proposed by Maxwell in the

Bitcoin forums in 2013 [92]. They present a method for users to mix their coins

together in a single transaction. This obfuscates coin movement by severing the

link between inputs and outputs. Clusters are then combined, triggering incorrect

results when using clustering techniques.

A BTx1

Without CoinJoin With CoinJoin

C DTx2

E FTx3

A B

C DTx1

E F

Figure 2.5: Transactions with and without CoinJoin.



2.3. Privacy Coins 31

For example, let us say that user Alice wants to pay Bob, Charlie wants to pay

Dennis and Eve wants to pay Francis. This can either be recorded as three separate

transactions on the chain, shown in ‘without CoinJoin‘ in Figure 2.5. This approach

makes it trivial to identify payees and recipients. Alternatively, users can perform a

CoinJoin together and join their coins in a single transaction. This would appear as

Alice, Charlie and Eve are sending coins to Bob, Dennis and Francis and hides the

intricate details of exactly who paid whom.

Alternatively, let us say that Alice, Bob and Charlie unfortunately had their

wallet addresses leaked and tied to their real-world identity, or had stolen Bitcoins

and wanted to hide their trail. They could perform multiple CoinJoins one after the

other with other users, in an attempt to pool and mix all their tainted coins together

with non-tainted coins. This can be performed using a tumbler or mixing service,

which given a transaction fee, would automate the entire process and allow the user

to select a degree of privacy, e.g. mix and return funds after 10 CoinJoins.

In practice, performing CoinJoins is cumbersome. Users need to find other

willing users and perform the advanced task of signing and merging their trans-

actions. Developers have created tools that automate this by automatically finding

users and performing the CoinJoin, such as Wasabi Wallet [152] and Samourai Wal-

let [132]. Tumblers, such as Bitcoin.Fog, allow users to mix their coins, but services

like this are often shutdown by law enforcement agencies due to criminal usage and

money laundering [89].

2.3 Privacy Coins

Bitcoins pseudonymity was short lived as two years after release the attacks on

its protocol came to fruition [96, 127] Since there has been an increase in privacy-

preserving coins (privacy coins) which attempt to solve the privacy flaws of Bitcoin,

such as Dash [42, 92]), Zcash [15, 160] and Monero [102, 131], each of which

provide different guarantees of anonymity.
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z-to-zt-to-zt-to-t

shielded pool

z-to-t

Figure 2.6: A simple diagram illustrating the different types of Zcash transactions. All
transaction types are depicted and described with respect to a single input and
output, but can be generalised to handle multiple inputs and outputs. In a t-
to-t transaction, visible quantities of ZEC move between visible t-addresses
(zIn,zOut 6= /0). In a t-to-z transaction, a visible amount of ZEC moves from
a visible t-address into the shielded pool, at which point it belongs to a hidden
z-address (zOut = /0). In a z-to-z transaction, a hidden quantity of ZEC moves
between hidden z-addresses (zIn,zOut = /0). Finally, in a z-to-t transaction,
a hidden quantity of ZEC moves from a hidden z-address out of the shielded
pool, at which point a visible quantity of it belongs to a visible t-address (zIn
= /0).

2.3.1 ZCash

Zcash (ZEC) is an alternative cryptocurrency developed as a (code) fork of Bit-

coin that aims to break the link between senders and recipients in a transaction. In

Bitcoin, recipients receive funds into addresses (referred to as the vOut in a transac-

tion), and when they spend them they do so from these addresses (referred to as the

vIn in a transaction). The act of spending bitcoins thus creates a link between the

sender and recipient, and these links can be followed as bitcoins continue to change

hands. It is thus possible to track any given bitcoin from its creation to its current

owner.

Any transaction which interacts with the so-called shielded pool in Zcash does

so through the inclusion of a vJoinSplit, which specifies where the coins are coming

from and where they are going. To receive funds, users can provide either a trans-

parent address (t-address) or a shielded address (z-address). Coins that are held in

z-addresses are said to be in the shielded pool.

To specify where the funds are going, a vJoinSplit contains (1) a list of output

t-addresses with funds assigned to them (called zOut), (2) two shielded outputs, and

(3) an encrypted memo field. The zOut can be empty, in which case the transaction

is either shielded (t-to-z) or private (z-to-z), depending on the inputs. If the zOut

list contains a quantity of ZEC not assigned to any address, then we still consider
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it to be empty (as this is simply the allocation of the miner’s fee). Each shielded

output contains an unknown quantity of ZEC as well as a hidden double-spending

token. The shielded output can be a dummy output (i.e., it contains zero ZEC) to

hide the fact that there is no shielded output. The encrypted memo field can be used

to send private messages to the recipients of the shielded outputs.

To specify where the funds are coming from, a vJoinSplit also contains (1)

a list of input t-addresses (called zIn), (2) two double-spending tokens, and (3) a

zero-knowledge proof. The zIn can be empty, in which case the transaction is either

deshielded (z-to-t) if zOut is not empty, or private (z-to-z) if it is. Each double-

spending token is either a unique token belonging to some previous shielded output,

or a dummy value used to hide the fact that there is no shielded input. The double-

spending token does not reveal to which shielded output it belongs. The zero-

knowledge proof guarantees two things. First, it proves that the double-spending

token genuinely belongs to some previous shielded output. Second, it proves that

the sum of (1) the values in the addresses in zIn plus (2) the values represented by

the double-spending tokens is equal to the sum of (1) the values assigned to the ad-

dresses in zOut plus (2) the values in the shielded outputs plus (3) the miner’s fee.

A summary of the different types of transactions is in Figure 2.6.

2.3.2 Dash

As in Zcash, the “standard” transaction in Dash is similar to a Bitcoin transaction in

terms of the information it reveals. Its main anonymity feature PrivateSend trans-

actions are a type of CoinJoin [92].

A CoinJoin is specifically designed to invalidate the multi-input clustering

heuristic described in Section 2.2.2, as it allows multiple users to come together

and send coins to different sets of recipients in a single transaction. If each sender

in a CoinJoin sends the same number of coins to their recipient, then it is difficult to

determine which input address corresponds to which output address, thus severing

the link between an individual sender and recipient.

In a traditional CoinJoin, users must find each other in some offline manner

(e.g., an IRC channel) and form the transaction together over several rounds of
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communication. This process is often centralised, as users become aware of one

another and may use a service to find each other. Dash aims to simplify this for

users by automatically finding other users for them and chaining multiple mixes

together. In order to ensure that users cannot accidentally de-anonymize themselves

by sending uniquely identifiable values, these PrivateSend transactions are restricted

to specific denominations: 0.01, 0.1, 1, and 10 DASH.



Chapter 3

Literature Review

3.1 Cryptocurrencies

3.1.1 Early digital cash

One of the earliest research publications on digital cash is eCash, created in 1983

by David Chaum [31]. Banks issue eCash to users, who are able to store it on their

local machines. eCash uses a concept called blind signatures, introduced in 1983,

which blinds contents of message before being signed, hiding the contents from the

signer. In the context of eCash, this allows users to hide their identities from banks,

and anonymises the links between spend and withdrawal transactions. However,

key issues with the system are that it requires banks to both participate and act as

the central authority, and banks have the power to mint digital cash as well as the

ability to refuse deposits.

Following this, in 1998 Wei Dais proposed B-money an anonymous and dis-

tributed cash system [41]. B-money is similar to Bitcoin, whereby, new transactions

are broadcast to all users, who also keep a complete record of the ledger. Users are

represented by public keys, and mint coins via completing computational puzzles.

This solved the previous issues raised by eCash as the new features alleviated the

need for an issuing bank. However, B-money raised a number of other issues. One

was with the protocol for creating new coins, which required account keepers to de-

cide on the cost of computations. This at the time was not feasible, due to the rapid

advancement of technology. Wei did propose an alternative way to mint money
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with a four step process, however this seemed complicated. Secondly, B-money

was entirely conceptual, having only been written on paper with no code or tests to

support its claims.

In 2005, Szabo introduced bit gold [117, 141], which used a proof-of-work

scheme to mint new coins. In this scheme, users would compete to solve computa-

tional puzzles and in doing so would earn bit gold. Each puzzle solution became a

part of the next one, and thus would form a chain. However, similarly to B-money,

bit gold remained as a concept and was not turned into working code.

3.1.2 Bitcoin and the alt-coins

In November 2008, Satoshi Nakamoto revealed the Bitcoin white paper to the metz-

dowd’s cryptography mailing list [106, 107]. This system solved previous problems

by creating a distributed shared public ledger that prevented double spending, did

not include any third parties, allowed pseudonymous user accounts and used a mod-

ified version of Hashcash’s proof-of-work scheme to generate new coins [10]. As

of today, Bitcoin is one of the most valuable cryptocurrencies with a market capi-

talisation of many billions of dollars (USD) [24, 40]. Researchers and companies

have examined and evolved the underlying software, forking the source code into

many new coins or developing new software based on the presented ideas. These

coins are named alternative coins or alt-coins, and examples include Litecoin [86],

Dash [42], Zcash [160] and Ethereum [29].

Litecoin, an alt-coin forked from Bitcoin, has some changes such as different

proof-of-work algorithm, decreased block generation times and an increased maxi-

mum number of coins. Dash offers faster transaction confirmations and is packaged

with a coin mixing service. Zcash builds upon Bitcoin by adding privacy preserv-

ing transactions that make use of zero-knowledge proofs [15, 70, 98]. Ethereum

is a blockchain proposed by Buterin in 2013, is not a fork of Bitcoin but it carries

many of the same principles. The main differences include: an introduction of a

Turing-complete (limited by execution costs) programming language named Solid-

ity, allowing user created smart contracts to be published on-chain, introduction of

custom user created tokens on-chain and an account-based accounting model. As of
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July 2021, Ethereum is the second most valuable cryptocurrency, just after Bitcoin.

3.2 Privacy
The openness of the ledger allows the transaction flows of the network to be mon-

itored. A large volume of work is dedicated to analysing the privacy of Bitcoin,

including improving its anonymity and analysing the privacy of alt-coins. Here, we

outline the most relevant works.

3.2.1 Anonymity of Bitcoin

Reid et al. presented one of the first anonymity analyses on Bitcoin in 2011 [124].

Their work analyses nearly two-years-worth of data across multiple angles. Firstly,

they model both transaction and wallets as two separate network graphs, reveal-

ing that the network has been increasing over time and that the user network is

cyclic with users sending coins to previously-owned addresses rather than treating

addresses as one-time use. By focusing on privacy, they also discovered that public-

keys can be linked with others via passively analysing the monetary flow between

addresses, Using this, they performed one of the first academic analysis of a theft

of bitcoins, tracing some of the stolen funds to an online wallet provider. However,

some of the limitations of this study are that the analysis was conducted very early

in the Bitcoin timeline and therefore was performed on a small graph, with poten-

tial users who were early adopters, and thus, this may not have represented a mature

graph.

In 2012, Ron and Shamir [127] analysed statistics across the entire blockchain,

from genesis until May 2012. Compared to previous analysis, the Bitcoin graph

had since grown by a factor of three. Using the union-find algorithm, Ron and

Shamir cluster 3M addresses as 1.8M entities, identifying that some of the most ac-

tive clusters belong to exchange or wallet providers. Furthermore, Ron and Shamir

identified that many bitcoins remained unused in sink addresses, and most trans-

actions moved only small quantities of the total bitcoin in circulation, and users

created transaction chains in an attempt to hide and weaken the links between their

addresses. In their paper, the researchers could have made further efforts to identify
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the larger entities, as only three out of a million or so entities are revealed. Their

reasoning and usage of the union-find algorithm is largely unclear, as is the method

used to identify clusters.

In the same conference as Ron and Shamir (Financial Cryptography and Data

Security, 2013), Androulakil et al. presented an evaluation of user privacy [8]. They

offered a short evaluation of privacy using two heuristics: a multi-input heuristic

and a change heuristic, as well as a longer evaluation on an account-based be-

haviour simulator. Using the first heuristic they are able classify 1.6M addresses

into 1M entities, and this is further reduced to 693k entities when using the sec-

ond heuristic. With the simulator, they identify that Bitcoin does not do enough

to protect the privacy of its users, as despite following the recommended guide-

lines, behaviour-based clustering can profile 40% of participants. The evaluation of

the two heuristics is very short, and the paper largely focuses on the data from the

simulation rather then the ground truth data from their defined heuristics.

Meiklejohn et al. [96] performed an in-depth measurement study on Bitcoin

and its anonymity. They significantly expanded upon previous clustering efforts

and examined the network from creation to April 2013, revealing network statistics,

usage and account heuristics, attacks on pseudo-anonymity and the role of entities

in the wider ecosystem. They interacted with a wide variety of services, manually

obtaining tags for 1,070 addresses. Using both the multi-input, and introducing,

a peel-chain heuristic, they analysed the entire network and expanded their tags

across clusters covering over 1.8M addresses. Their work demonstrates the effec-

tiveness of such clustering techniques. In addition, they presented multiple real

world case studies tracking criminal activities, finding that funds from a Bitcoin

ponzi scheme were distributed to a variety of services, and tracking multiple thefts

to exchanges. However, Meiklejohn et al. also presented progressive enhancements,

as both heuristics had been previously published in some form. The effectiveness

of the reidentification attack can be reduced if users use mixing services. Their

clusters were not compared against ground truth, however, during this time period

in the Bitcoin ecosystem, ground truth data was likely only obtainable by directly
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contacting exchanges and services that may not have wanted to share their sensitive

data.

Spagnuolo et al. presented BitIodine [139], a modular analytic framework

which parses, clusters, classifies and visualises Bitcoin data. In their work they

describe the workings of the system which uses a variety of open-source tools, in-

cluding the C programming language, Neo4J (a graph database) and Gephi (an open

source visualiser). They implement both the the multi-input and change heuristic,

and test these on real-world use cases. Notably, they argue that they find a con-

nection between an address belonging to the owner of a dark market and a separate

address which at one point contained over 111k BTC. In addition, they analysed

addresses that sent and received coins from the CryptoLocker ransomware. Using

their tool they estimate the scammers obtained over 1.1M USD worth of BTC and

identify what is claimed to be a potential ”test” transaction that occurred days be-

fore the first ransom was paid. There are however some limitations with both the

work and tool. With regard to the work, the case studies are very short, and stating

an address has a ”meaningful connection” to another is not indicative of holding

any real significance. The tool itself stores all transactions and clusters in memory,

which makes the process memory-intensive and costly, given the increasing size

of the Bitcoin ledger. It is limited to exporting static graphs and is not bundled

with a user interface. Thus the tool requires users to have a high level of technical

knowledge to operate.

Kalodner et al. have presented an open-source blockchain analytics tool

BlockSci [78]. Their paper describes in detail the design choices, and architectural

challenges, and then presents multiple real-world case studies. When compared to

standard graph analytic platforms, the BlockSci program is significantly faster and

easier to use than BitIodine, as it is bundled with documentation and a python inter-

face. The tool itself features an extensive analytics engine, allowing clustering and

tracing across UTXO cryptocurrencies and their corresponding forks. Within their

use-cases, the authors demonstrate that anonymity is affected by usage patterns in

multi-signature wallets, identifying that 5% of Bitcoin addresses have their privacy
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affected as users cash out their coins on corresponding forks, such as Bitcoin Cash.

By clustering these transactions across Bitcoin forks, they reveal information about

users that can be linked back to their wallets. The paper does not compare the

tool against previous blockchain analytics programs such as BitIodone, but instead

against graph analytics tools. Since the release of the paper, development of the tool

has since discontinued. The tool also requires a machine with very large memory in

order to cluster the blockchain.

The research above demonstrates that Bitcoin’s anonymity can be breached,

since there have been new proposals to resolve these issues and improve privacy

without major changes to the protocol. One process is CoinJoin [92], where users

create a transaction together, merging their inputs and outputs in order to reduce

the linkability within their transaction. This process is one of the foundational fea-

tures of the cryptocurrency Dash [42] which automates the entire procedure. This

CoinJoin mechanism is explained in more detail in Chapter 2.2.2.

Analysis around the anonymity of CoinJoin [9, 91, 95, 97, 103] presents

many issues. Atlas affirms that inputs and outputs of a CoinJoin can be linked

through brute-forcing all possible summations and more so, if denominations can be

uniquely identified [9]. However, the process can quickly become computationally

expensive as CoinJoin is a variant of the Knapsack problem [91, 128]. Dash [42]

improves the usability of Maxwell’s CoinJoin [92] through automating the process

of finding participants to mix with using fixed denominations, further explained in

Chapter 2.3.2. However this adds a time delay to transactions, as users must wait to

find others with whom to mix.

3.2.2 Anonymity of privacy coins

In Bitcoin transactions information is entirely public and, as previously shown, al-

lows any entities to freely track the movement of coins. Protocols have since been

developed to integrate anonymity. Many of these have been implemented into alter-

native coins marketed with a privacy focus.

Zerocash is a protocol, forked from Bitcoin, that adds privacy-preserving trans-

actions [15, 98]. These use zero-knowledge proofs to ”shield” coins, adding an



3.2. Privacy 41

anonymity layer that hides the amount, sender and receiver. Thus, when coins are

spent, no information about the transaction is revealed other than a potential fee.

Users have the option to use this feature, for anonymous coins they utilise zerocoins,

also known as shielded coins/transactions, and for non-anonymous coins they can

spend basecoins, also known as transparent coins/transactions. Coins can be con-

verted to either type at the users preference. This concept is further explained in

Chapter 2.3.1. Zerocash was subsequently commercialised into the cryptocurrency

ZCash. The initial downsides of ZCash were that the original versions required

a significant amount of processing power (3GB of RAM and several minutes) to

construct the zero-knowledge proof required for a single shielded transaction. This

was not suitable for sending quick transaction, nor were users able to perform such

computations on their mobile devices. They originally needed to run a full ZCash

node, as most wallet software only supported transparent transactions. In doing so,

this led to the second issue, whereby running a node and performing shielded trans-

actions required some familiarity with the command-line, as even the software did

not come with a user interface. Given that this type of transaction was optional,

not enabled by default or the above issues, the anonymity set of the shielded pool

was thus confined to users who were technically advanced. Recent advancements

have since solved these issue such as reducing the memory usage by 98%, reducing

transaction times by 80% [25], and introducing mobile wallets which support all

types of transactions such as Zecwallet Lite [165].

Prior to the above advancements, researchers had revealed the short-comings

of the shielded pool. In 2018, we published the first peer-reviewed study discussing

the limitations and privacy flaws that were then present in Zcash. This is explained

in detail in Chapter 4. Whilst we conducted this research, others published studies

that had parallels with our work.

In late 2017, Quesnelle [122] also published a short study analysing the pri-

vacy of Zcash. They revealed that transaction meta-data can be used to link coins

between deshielding and shielded transactions. They identified that the vast ma-

jority of coins were not used within the shielded pool, given that only 19.6% of
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transactions used some form of a privacy-preserving feature and that 57.7% of these

were used to deshield coins. Although Quesnelle is credited with creating round-

trip transactions, this is also a concept that we discovered during our research. In

this process transparent coins are sent to a shielded address, and then a similar or

identical number of shielded coins is returned to a public address within a close

time frame. Around 31.5% of shielded coin transactions were conducted within

round-trips. Using these, Quesnelle linked coins belonging to miners after their re-

spective mining pool had deshielded newly minted coins. Quesnelle believes the

reasons for these short-comings are due to lack of support within third-party wallets

and high computational costs. The study has limitations because the work exclu-

sively focuses on brief statistics and round-trips. The background does not clearly

explain the workings of Zcash, and the transparent transactions which account for

the majority of transactions in Zcash have not been fully discussed.

Birkyukov et al. [18] published heuristics analysing the behaviour of miners

in both transparent and shielded pools. They extended previous work [80] by pre-

senting heuristics targeting the two payout strategies deployed by mining pools.

The first strategy identifies users of mining pools by following transactions that pay

users with public addresses, whereas the second strategy identifies mining pools

that directly pay users from a shielded address. Combined, their heuristics are able

to link 88.4% of all mining rewards to shielded addresses. When combined with

the Founder heuristic from previous work, presented in Section 4.5.1, they are able

to link over 84% of all de-shielded transactions. In terms of downsides, the work

does not focus any analysis on transparent transactions and their heuristics primarily

target de-anonymising mining pool transactions.

In 2014, developers created Monero [102], a privacy focused cryptocurrency

based on Nicolas van Saberhagen’s whitepaper on CryptoNote [30, 131]. Monero

uses ring signatures, which are a digital signature that can be created by a user from

a group of users that each have keys. When creating a signature, it is computa-

tionally impracticable to identify which member of the group created the signature.

When a user wants to spend their coins in Monero, they generate a ”min-in”, which
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is a ring signature using their output as a key with other public keys taken from

previous outputs in the blockchain. These all act as decoys within the new transac-

tion, and when created the inputs appear to be equally likely to have been originally

spent, which masks the origin of the transaction. All aspects of the transaction are

obfuscated, hiding the senders, receivers and amounts.

Multiple research projects in 2017 identified issues which can disrupt the

anonymity of the system [84, 99, 145]. Kumar et al. presented three heuristics that

were used to trace 87% of inputs [84]. By using temporal analytics, they identify

that it is not as difficult to predict the correct output in a ring signature. Given that

over time it is more likely a UTXO had already been spent and thus the most recent

output is very likely to be the real one being spent. Secondly, by using a technique

called leveraging output merging, they analyse user behaviour in transactions where

two outputs belong to the same entity. Thirdly, they present that users themselves

can disrupt the anonymity of others by choosing to do a mix with zero mix-ins,

damaging the anonymity set of others who may have referenced their coins. Moser

et al. presented similar work, by detailing issues surrounding the coin selection al-

gorithm [99]. Similarly, they found it more likely to select more recently generated

outputs.

These works all reveal that, despite best efforts, so called ”privacy coins” are

vulnerable to attack. Over time, scientific advancements will identify weak points

in systems that were previously thought to be secure. Therefore, it is pertinent to

develop new techniques in order to strengthen current practices and create better

mitigations.

3.3 Blockchain crime

The decentralised, pseudonymous and uncensorable transaction system has at-

tracted a wide range of users, some of whom exploit the system for nefarious rea-

sons. Bitcoin’s ability to transfer coins across borders (regardless of location), com-

bined with misleading claims that Bitcoin offers anonymity, have attracted those

involved in crime. Such crimes range from operating a dark market, theft, and ran-
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somware, to scams and money laundering. This section details the literature that

analyses transactions linked to misdeeds.

3.3.1 Dark markets

Underground markets are those which sell goods or services that may or may not be

forbidden by law. Historically, there have been many examples with some predating

the second world war [44, 147]. With the advancement of technology, these markets

have naturally made an online appearance, with the earliest cyber markets selling in-

formation about goods and services (e.g., credit card numbers, viruses, botnets) via

internet relay chats (IRC) [55, 143]. Following take downs by law enforcement, this

activity moved to online forums, marketplaces and registration-only websites with

research analysing their appearances in China [167]. The underground economy

is now considered to be an integral piece of cybercrime, due to servicing criminal

enterprises with illicit goods and services [63].

Silk Road, a notorious and commonly known underground market attributed

to Bitcoin launched in 2011 [34]. It operates similarly to Amazon and eBay,

where anonymous sellers are able to sell goods and services to anonymous con-

sumers [71]. The market ran as a Tor hidden service using Bitcoin as the medium

of exchange [19]. The market sold a large variety of goods, such as unlicensed

firearms and drugs (both legitimate and illegitimate), and services such as assassi-

nation, botnets, malware and targeted hacking. The initial version, 1.0, operated for

over two years and the second version, 2.0, for a year before both being shut down

by the FBI [7, 38].

In 2013, Christin [34] published an in-depth measurement study of Silk Road,

analysing the types of products sold, the evolution of sellers including their coun-

tries of origin, and economic indicators, including the use of Bitcoin and sales vol-

ume. With regards to Bitcoin, they estimated that over a 29-day span the mar-

ketplace transacted 1.3M BTC (1.22M USD), which they believe corresponded to

between 4.5% and 9% of all exchange trades. The Bitcoin analytics in the paper are

very short and the authors make no attempts to trace the illicit funds, however this

is acknowledged as not being the primary focus. In 2014, Spagnuolo et al. [139]
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used their Bitcoin tracing, classification, and verification system to analyse crime

and perform an analysis of potential connections between the Silk Road cold wallet

and its founder, and measured on-chain crime from the CryptoLocker ransomware.

We discuss this paper earlier in Chapter 3.2.1.

Many new anonymous market places have been created since the closure of

Silk Road, with recent crime studies reporting an increasing trend in dark market

revenues and competition. In 2015, Soska et al. [138] performed a long term mea-

surement analysis of 35 marketplaces across two years, detailing the growth of the

underground ecosystems. In their study they scraped and parsed the data from these

market places across multiple snapshots to analyse how the system evolved over

time. Through analysing sales volumes in Silk Road, they projected the market-

place produced $100M USD a year, which was in accordance with the amounts

projected by the US government. Overall, they estimate that the ecosystem trans-

acts over $500,000 USD per day. Market place closures and shutdowns resulted in

users moving their business elsewhere, and that, interestingly, the ecosystem was

resilient to scams and law enforcement take-downs. In terms of limitations, it is

unclear whether the researchers have made their datasets available for others to use

in their own research. Some of the datasets are censored due to insufficient amounts

of data collected. The authors did not appear to directly interact with the services

as estimated sales volume is predicted based on user feedback instead of real trans-

actions.

Markets are, however, actively shut down, either voluntarily (Sheep Market

place [133]) or forcefully by law enforcement (Utopia [58]). Further analysis of

underground markets includes the following works [20, 67, 68, 87, 140], however

these do not focus on cryptocurrency transactions but demonstrate techniques used

to collect data.

3.3.2 Thefts, Ransomware and Sextortion

Cryptocurrency exchanges and user accounts have been subjected to numerous

cases of theft. Opened in July 2010, Mt Gox was one of the worlds largest digi-

tal asset exchanges, allowing users to trade via standardised market methods [146].
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At its peak the service was responsible for handling over 70% of all bitcoin transac-

tions [56]. In 2011, it was reported that someone had been gradually stealing coins

from the exchange-owned wallets, siphoning 750,000 bitcoins ($330 million USD)

which subsequently caused the company to file for bankruptcy [158].

In 2015, the Bitstamp exchange was breached and hackers stole 19,000 bitcoins

($5 million USD) [66]. Employees from Bitstamp were targeted through phishing

campaigns which ran for weeks. The attackers distributed malware via Skype and

email channels, compromising internal machines. In 2016, Bitfinex, a Hong Kong

based exchange, was also breached with hackers stealing 119,756 BTC ($72 million

USD) causing a 20% drop in the Bitcoin price when announced [22, 32].

Lazarenko et al. [85] list and classify 48 attacks on blockchain projects which

had lead to theft of coins. These attacks are grouped into eight categories, some

of which include insider attacks, phishing and malware. For each project attacked,

they list the number of coins lost and detail the cause. Their analysis shows that the

number of attacks on blockchain projects has increased annually, likely due to the

increase in available technologies. Exchanges had been subject to the most thefts

and attacks on Bitcoin, whereas Ethereum Initial Coin Offerings (when an unreg-

ulated entity raises money through distribution of cryptocurrency assets) had the

most Ether stolen. Overall the report finds that 59% of blockchain related projects

are closed after a cyber attack. The analysis in the paper is very brief, and the pa-

per simply lists out a number of attacks, however this is due to the research being

classified as a survey rather than an in-depth study.

Since 2012 a new type of malware has emerged: ransomware. It is malicious

software that prevents a user from accessing their computer until they pay a cer-

tain amount to the operator. The payloads are spread through a variety of ways,

for example through malicious email attachments [2] or via exploited vulnerabili-

ties [101]. In May 2017 the ransomware WannaCry attacked Windows Machines

worldwide, encrypting user data and holding it as ransom, requiring users to pay

with bitcoin to regain access. Some of the infected machines belonged to national

hospitals and telecommunication companies [83]. The ransomware caused an esti-
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mated $4 billion USD worth of damage [17]. After the outbreak, it was discovered

that the attackers had used the cross-currency exchange ShapeShift to convert their

tainted Bitcoins into Monero, which was reported to then ’disappear’ [57].

Conti et al. published an in-depth study of ransomware on Bitcoin, presenting

techniques to identify, collect and analyse transaction data [37]. They present an

identification framework to identify extorted ransom transactions which consists of

three components. First is the identification of addresses from online resources, re-

moval guides and threat reports. These are then clustered using both the multi-input

and change heuristics. Next is the extraction of all transactions which contain these

addresses, and finally, the classification of the amounts received as ransom if at least

one of their payment conditions is satisfied. This methodology is applied to twenty

ransomware cases, and for each they detail payment strategies, methods of infec-

tion and ransoms extorted. Overall ransomware operators earned an excess of 3M

USD, and the operators of WannaCry earned 238 payments averaging a total of 86k

USD (47 BTC), compared to the operators of CryptoWall who obtained 2.2M USD

(5,351 BTC). The work is very thorough and the appendices list all the addresses

used in the initial portions of the investigation, which is useful for future research.

Limitations of the work include that the ransom addresses are collected from public

sources and such data quality cannot be guaranteed, however they compare their

results and find that it is similar to previous works.

Paquet-Clouston et al. [115] present methods identifying illicit Bitcoin trans-

actions by focusing on 35 ransomware families. The work obtains, clusters and

filters a set of seed addresses obtained from researchers and online sources. By fol-

lowing the flow of money, they found that multiple ransomware families interacted

with the same actor. Across four years they reveal a lower bound of over 22k BTC

($12M USD) in ransomware payments, with the Locky ransomware receiving over

$7.8M USD and more than 50% of payments. The researchers concluded that a

small number of actors, just three families, dominated this genre of crime and were

accountable for 86% of the marketshare.

Huang et al. [72] created a framework to track ransomware end-to-end and
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applied this to real-world cases across a two-year period. They first obtained a

list of addresses from public ransomware infection reports, seed addresses and a

form of synthetic address (victims they created and tracked by sending operators

micro-payments). These were turned into clusters using co-spend heuristics, and

transactions to and from the clusters were filtered and analysed. Overall, they esti-

mated that operators from 10 ransomware attackers obtained $16M USD from 20k

potential victims. Through looking at inflows to clusters, it is found that exchanges

account for 40% of payments. They also revealed that BTC-e, a Russian exchange,

prior to being seized by US law enforcement, was a key exit point used for criminals

in the Locky and CryptoDefense ransomwares, as they saw $3M USD flow through

their exchange.

Some scams feed on the fear, gullibility and technical infancy of the target

users. Paquet-Clouston et al. [116] analysed emails sent by criminals to victims

of sextortion scams requesting bitcoin as payment. Sextortion is a spam scheme

whereby an attacker emails victims, claiming that sensitive and private photos or

videos will be leaked to their contacts unless they are paid some bitcoins. The re-

searchers analysed 4.3M emails, bucketing emails into 15 campaigns and extracted

all bitcoin addresses. They extracted 245 addresses from the emails, which when

clustered and filtered came to 485 payment addresses that had received coins. Their

analysis revealed that scammers attempt to extort higher amounts of coins based on

the language used in the emails, Emails written in the English language asked for a

mean of $745 USD whereas Spanish language scams were asked for $249, indicat-

ing that attackers adjusted their prices based on the victims’ perceived language and

location. By following cash flows from the spam clusters, they discovered that en-

tities were moving coins to known exchanges. However, this part of tracing is very

limited as tags were obtained from an open source website. By analysing the cam-

paigns they identified that multiple clusters appeared across multiple campaigns,

suggesting that the majority of revenue was collected by a single real world entity.

Untagged clusters were sent 48 BTC (17% of revenue), and these were mentioned

to possibly be potential cash-out services. In conclusion, they estimated that one
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entity may be responsible for the majority of crimes, with scammers harnessing a

lower bound of over $1 million USD within 11-months. In terms of limitations, the

addresses were obtained from a data set which was caught by a spam filter, and thus

may not have reached most recipients, thus the estimations are a lower bound and

only cover a small section of this ecosystem. The multi-input heuristic may have

clustered in addressess belonging to the same author but perhaps different scams.

The source of the tags is extremely limited, and thus it is unclear exactly how many

of the coins were sent to and from exchanges.

3.3.3 Investment Programs and Money Laundering

Past research has quantified and described crime and scams running on blockchain

ecosystems that use high return investment programs and ponzi schemes as well as

mixing services as a form of money laundering.

Vasek et al. [150] presented analysis of four types of scams (ponzi schemes,

mining scams, scam wallets and exchanges) that used Bitcoin, identifying 192

scams and tracking their payments. By collecting scams from various data sets

online, and after a cleaning process, they extracted all relevant transactions from

the Bitcoin blockchain. They modelled 42 scams into four categories and anal-

ysed each. One class of scams they analysed was high yield investment programs

(HYIPs). These are schemes that promise investors a high rate of return. Previous

investors are paid by new investors, and this process repeats until the scheme closes

or collapses. By comparing traditional HYIPs to Bitcoin based HYIPs, they found

that Bitcoin was not yet widely accepted. However, some act more traditionally

using fiat currency and then transitioning into Bitcoin. From these, they identified

a user who earned 1.6M USD. Another category they analysed was scam wallets.

These are online wallets that claim to host Bitcoin for users, but the operators, in-

fact, steal the coins that have been deposited. One scam wallet in particular earned

4,100 BTC ($1M USD). Overall, they found that scammers earned $11 million USD

from 13,000 victims. The research within this paper is very thorough, covering a

wide variety of scams including economic perspectives. The work however only

focuses on how many coins were received and they do not track the illicit funds
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after they have been received.

In 2018, Bartoletti et al. [11] applied data mining techniques and machine

learning algorithms to detect Ponzi schemes in Bitcoin. Ponzi schemes are a form

of HYIP where users of the schemes are paid only by other new users that join the

scheme. They collected 32 addresses belonging to ponzis and through clustering

obtained 1211 addresses. Analyses revealed that these received $10M USD worth

of deposits. Using these clusters they derived and extracted features (e.g., statis-

tics, measures of inequality) from both these and random addresses. By testing a

range of supervised binary classifiers, they found that the random forest algorithm

was correctly able to identify 96% of addresses as ponzi schemes. This experi-

ment is very thorough, and the authors released addresses and features used and

tested across multiple classifiers and ponzi schemes. The limitations are that this

approach was only tested against ponzi schemes, so it would be interesting to see

whether it is applicable to other types of scams.

Bitcoin is not the only cryptocurrency prone to being targeted by crime; this

behaviour also occurs on Ethereum. Chen et al. [33] used data mining and machine

learning to detect Ponzi schemes, scams that fraudulently promise high returns by

generating income for previous investors by taking money from later investors.

They first analyse a known smart contract ponzi scheme by studying the transac-

tions betwen the contract and participants. With this they developed sets of features

that are key to ponzi schemes. The first set of features looks at statistics, including

the number of payments into and out, and the proportion of users who sent money to

the coin before ever receiving anything in return. The second set analyses the use of

opcodes, assembly like commands used by contracts extracted from the Ethereum

Virtual Machine. These features were tested with a machine learning algorithm that

classified whether the contract resembled a ponzi scheme. The classifier was tested

on 54 previously known ponzi schemes and was able to detect 45 schemes. The

undetected 9 were manually investigated and found not to be ponzi schemes. Out of

280k contracts on Ethereum, they estimate that 434 ponzi scheme smart contracts

exist. In terms of limitations, the reasoning for the machine learning algorithm is
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not convincing, it would be clearer to compare this against other algorithms to jus-

tify the decision. The results detected 386 algorithms that were not checked, and it

would have been helpful to take a random sample to manually check whether they

could be confirmed.

Bartoletti et al. [12] performed a survey on ponzi schemes in Ethereum and

analysed them from multiple perspectives. Similar to prior works, they extracted

features from Ethereum ponzi schemes based on their transaction behaviours and

smart contract code, using this to create a machine learning algorithm to classify and

detect smart contracts. In addition, they also measured multiple statistics, including

the gains and losses incurred by users of 23 contracts, identifying that most users

never receive any money after investing with only one or two users who earn high

amounts of coin. The study is very thorough and ends with raising a number of

recommendations that could be used to combat this crime. However, the study does

not analyse where the money goes after being sent to the key players in the scheme.

Ponzi schemes, extortion scams and ransomware are not the only crimes occur-

ring on blockchain. A Pump-and-dump (P&D) is a scheme where users artificially

inflate (the “pump”) the price of an asset by recommending that others purchase it at

a specific time in a coordinated manner, in the hopes that its value increases. Once

the value reaches a certain point, the holders of the scheme sell that asset to profit

from the gain in price (the “dump”). This scam was prevalent within the stock mar-

ket space [26], and is now performed on cryptocurrencies. With cryptocurrencies,

organisers use online chat services such as Telegram to coordinate their schemes.

Several research articles analysing schemes have been published, identifying how

they are run and producing models to detect their activities [61, 79, 88, 157].

Tao et al. [88] published an in-depth study analysing the early P&D ecosystem.

They manually collect data from pump and dump groups online and, after filtering

and processing, analysed 500 distinct P&D events from 80 groups involving 239

tokens across 3 cryptocurrency exchanges. Their analysis revealed that P&Ds are

regularly scheduled at the advertised times, only lasting for several minutes but

being able to return an average of 212% for investors. However, an investor’s per-
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formance depends on when they receive the message to conduct their trade, with

some groups operating with insiders who are aware of the coins beforehand. Jihau

et al. [157] extend previous works by revealing the entire anatomy of P&D schemes

on cryptocurrencies and by producing a prospective prediction algorithm that able

to identify and trade coins that signal movements indicative of P&Ds. Their algo-

rithm strictly uses market data and is able to generate a 60% return over two and a

half months.

Previous research has addressed the use of money laundering tools in the

ecosystem. These tools can be used to launder dirty Bitcoins, obscuring the trail

of coins and making it difficult to trace stolen money. Alternatively, they are sold as

anonymisation tools, that protects the users anonymity by merging their coins with

others.

Moser et al. [104] explored mixing services designed to anonymise Bitcoin

transactions. They sent coins to three services and used graph analytics to reverse-

engineer the functionality of service, to determine whether they could back-trace

their coins. Two of the three services were revealed to be providing some level of

anonymity, as the researchers were unable to trace back their coins. The services

from blockchain.info and bitcoin.fog were found to aggregate small transactions

into large bundles before performing any payments. However, using bitlaundry

they were able to find a connection, but only within a small amount of one of their

transactions. This service did not bundle transactions, and instead used user inputs

to pay back other users, not delivering on the privacy promised. As researchers were

only able to identify a small amount of transactions from one service, this highlights

the challenges faced by current anti-money laundering techniques when only using

graph analytics. The study is very limited, with the researchers only covering three

services with a small number of transactions over a short period of time. It might

have been more effective if the researchers had sent more transactions into each of

the relevant services over a longer time period.

Wegberg et al. [148] extended the literature by analysing the usability and cash-

out effectiveness of mixing services and exchanges. In their experiment, they sent
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coins to five mixing services and three of the five mixers stole the coins. By tracing

their stolen coins, they identified that two mixers combined their stolen coins in

the same transaction after the experiment had concluded, indicating that they might

have been collaborating or were the same entity. The two working mixers success-

fully delivered their coins with no taint, meaning that there was no linkage found

between the coins sent and the coins received. They concluded that for smaller

denominations the mixers offered a cost effective and user friendly service with a

minimised risk of being scammed if the user had read reviews prior to using the

service.



Chapter 4

An Empirical Analysis of Anonymity

in Zcash

4.1 Overview

Since the introduction of Bitcoin in 2008 [106], cryptocurrencies have become in-

creasingly popular to the point of reaching a near-mania, with thousands of de-

ployed cryptocurrencies now collectively attracting trillions of dollars in invest-

ment. While the broader positive potential of “blockchain” (i.e., the public decen-

tralized ledger underlying almost all cryptocurrencies) is still unclear, despite the

growing number of legitimate users there are today still many people using these

cryptocurrencies for less legitimate purposes. These range from the purchase of

drugs or other illicit goods on so-called dark markets such as Dream Market, to

the payments from victims in ransomware attacks such as WannaCry, with many

other crimes in between. Criminals engaged in these activities may be drawn to Bit-

coin due to the relatively low friction of making international payments using only

pseudonyms as identifiers, but the public nature of its ledger of transactions raises

the question of how much anonymity is actually being achieved.

Indeed, a long line of research [8, 96, 125, 127, 139] has by now demonstrated

that the use of pseudonymous addresses in Bitcoin does not provide any meaningful

level of anonymity. Beyond academic research, companies now provide analysis

of the Bitcoin blockchain as a business [48]. This type of analysis was used in
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several arrests associated with the takedown of Silk Road [49], and to identify the

attempts of the WannaCry hackers to move their ransom earnings from Bitcoin into

Monero [43].

Perhaps in response to this growing awareness that most cryptocurrencies do

not have strong anonymity guarantees, a number of alternative cryptocurrencies or

other privacy-enhancing techniques have been deployed with the goal of improving

on these guarantees. The most notable cryptocurrencies that fall into this former

category are Dash [42] (launched in January 2014), Monero [102] (April 2014),

and Zcash [160] (October 2016). At the time of this writing all have a market

capitalization of over 1 billion USD [40], although this figure is notoriously volatile,

so it should be taken with a grain of salt.

Even within this category of privacy-enhanced cryptocurrencies, and despite

its relative youth, Zcash stands somewhat on its own. From an academic perspec-

tive, Zcash is backed by highly regarded research [15, 98], and thus comes with

seemingly strong anonymity guarantees. Indeed, the original papers cryptographi-

cally prove the security of the main privacy feature of Zcash (known as the shielded

pool), in which users can spend shielded coins without revealing which coins they

have spent. These strong guarantees have attracted at least some criminal attention

to Zcash: the underground marketplace AlphaBay was on the verge of accepting

it before their shutdown in July 2017 [5], and the Shadow Brokers hacking group

started accepting Zcash in May 2017 (and in fact for their monthly dumps accepted

exclusively Zcash in September 2017) [28].

Despite these theoretical privacy guarantees, the deployed version of Zcash

does not require all transactions to take place within the shielded pool itself: it

also supports so-called transparent transactions, which are essentially the same as

transactions in Bitcoin in that they reveal the pseudonymous addresses of both the

senders and recipients, and the amount being sent. It does require, however, that

all newly generated coins pass through the shielded pool before being spent further,

thus ensuring that all coins have been shielded at least once. This requirement

led the Zcash developers to conclude that the anonymity set for users spending
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shielded coins is in fact all generated coins, and thus that “the mixing strategies

that other cryptocurrencies use for anonymity provide a rather small [anonymity

set] in comparison to Zcash” and that “Zcash has a distinct advantage in terms of

transaction privacy” [163].

In this Chapter, we provide the first in-depth empirical analysis of anonymity

in Zcash, in order to examine these claims and more generally provide a longitudi-

nal study of how Zcash has evolved and who its main participants are. We begin

in Section 4.3 by providing a general examination of the Zcash blockchain, from

which we observe that the vast majority of Zcash activity is in the transparent part

of the blockchain, meaning it does not engage with the shielded pool at all. In Sec-

tion 4.4, we explore this aspect of Zcash by adapting the analysis that has already

been developed for Bitcoin, and find that exchanges typically dominate this part of

the blockchain.

We then move in Section 4.5 to examining interactions with the shielded pool.

We find that, unsurprisingly, the main actors doing so are the founders and miners,

who are required to put all newly generated coins directly into it. Using newly de-

veloped heuristics for attributing transactions to founders and miners, we find that

65.6% of the value withdrawn from the pool can be linked back to deposits made

by either founders or miners. We also implement a general heuristic for linking to-

gether other types of transactions, and capture an additional 3.5% of the value using

this. Our relatively simple heuristics thus reduce the size of the overall anonymity

set by 69.1%.

In Section 4.6, we then look at the relatively small percentage of transactions

that have taken place within the shielded pool. Here, we find (perhaps unsurpris-

ingly) that relatively little information can be inferred, although we do identify cer-

tain patterns that may warrant further investigation. Finally, we perform a small

case study of the activities of the Shadow Brokers within Zcash in Section 4.7, and

in Section 4.9 we conclude.

All of our results have been disclosed, at the time of the work’s submission, to

the creators of Zcash, and discussed extensively with them since. This has resulted
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in changes to both their public communication about Zcash’s anonymity as well as

the transactional behavior of the founders. Additionally, all the code for our analysis

is available as an open-source repository.1

4.2 Background

In this section we describe four types of participants who interact in the Zcash

network.

Founders took part in the initial creation and release of Zcash, and will receive

20% of all newly generated coins (currently 2.5 ZEC out of the 12.5 ZEC block

reward). The founder addresses are specified in the Zcash chain parameters [162].

Miners take part in the maintenance of the ledger, and in doing so receive newly

generated coins (10 out of the 12.5 ZEC block reward), as well as any fees from the

transactions included in the blocks they mine. Many miners choose not to mine on

their own, but join a mining pool; a list of mining pools can be found in Table 4.4.

One or many miners win each block, and the first transaction in the block is a coin

generation (coingen) that assigns newly generated coins to their address(es), as well

as to the address(es) of the founders.

Services are entities that accept ZEC as some form of payment. These include

exchanges like Bitfinex, which allow users to trade fiat currencies and other cryp-

tocurrencies for ZEC (and vice versa), and platforms like ShapeShift [159], which

allow users to trade within cryptocurrencies and other digital assets without requir-

ing registration.

Finally, users are participants who hold and transact in ZEC at a more indi-

vidual level. In addition to regular individuals, this category includes charities and

other organizations that may choose to accept donations in Zcash. A notable user is

the Shadow Brokers, a hacker group who have published several leaks containing

hacking tools from the NSA and accept payment in Zcash. We explore their usage

of Zcash in Section 4.7.

1https://github.com/manganese/zcash-empirical-analysis

https://github.com/manganese/zcash-empirical-analysis
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Figure 4.1: The total number of each of the different types of transactions over time.

4.3 General Blockchain Statistics
We used the zcashd client to download the Zcash blockchain, and loaded a

database representation of it into Apache Spark. We then performed our analy-

sis using a custom set of Python scripts equipped with PySpark. We last parsed the

block chain on January 21 2018, at which point 258,472 blocks had been mined.

Overall, 3,106,643 ZEC had been generated since the genesis block, out of which

2,485,461 ZEC went to the miners and the rest (621,182 ZEC) went to the founders.

4.3.1 Transactions

Across all blocks, there were 2,242,847 transactions. A complete breakdown of the

transaction types is in Table 4.1, and graphs depicting the growth of each transaction

type over time are in Figures 4.1 and 4.2.2 The vast majority of transactions are

public (i.e., either transparent or a coin generation). Of the transactions that do

interact with the pool (335,630, or 14.96%, in total), only a very small percentage

are private transactions; i.e., transactions within the pool. Looking at the types

of transactions over time in Figure 4.1, we can see that the number of coingen,

shielded, and deshielded transactions all grow in an approximately linear fashion.

As we explore in Section 4.5.2, this correlation is due largely to the habits of the

miners. Looking at both this figure and Figure 4.2, we can see that while the number

2We use the term ‘mixed’ to mean transactions that have both a vIn and a vOut, and a vJoinSplit.
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Type Number Percentage

Transparent 1648745 73.5
Coingen 258472 11.5
Deshielded 177009 7.9
Shielded 140796 6.3
Mixed 10891 0.5
Private 6934 0.3

Table 4.1: The total number of each transaction type.
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Figure 4.2: The fraction of the value in each block representing each different type of trans-
action over time, averaged daily. Here, ‘public’ captures both transparent trans-
actions and the visible components of mixed transactions.

of transactions interacting with the pool has grown in a relatively linear fashion, the

value they carry has over time become a very small percentage of all blocks, as

more mainstream (and thus transparent) usage of Zcash has increased.

4.3.2 Addresses

Across all transactions, there have been 1,740,378 distinct t-addresses used. Of

these, 8,727 have ever acted as inputs in a t-to-z transaction and 330,780 have ever

acted as outputs in a z-to-t transaction. As we explore in Section 4.5.2, much of

this asymmetry is due to the behavior of mining pools, which use a small number of

addresses to collect the block reward, but a large number of addresses (representing

all the individual miners) to pay out of the pool. Given the nature of the shielded
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Figure 4.3: The total value in the shielded pool over time, in tens of thousands of ZEC.

pool, it is not possible to know the total number of z-addresses used.

Figure 4.3 shows the total value in the pool over time. Although the overall

value is increasing over time, there are certain shielding and de-shielding patterns

that create spikes. As we explore in Section 4.5, these spikes are due largely to the

habits of the miners and founders. At the time of writing, there are 112,235 ZEC in

the pool, or 3.6% of the total monetary supply.

If we rank addresses by their wealth, we first observe that only 25% of all

t-addresses have a non-zero balance. Of these, the top 1% hold 78% of all ZEC.

The address with the highest balance had 118,257.75 ZEC, which means the richest

address has a higher balance than the entire shielded pool.

4.4 T-Address Clustering
As discussed in Section 4.3, a large proportion of the activity on Zcash does not use

the shielded pool. This means it is essentially identical to Bitcoin, and thus can be

de-anonymized using the same techniques discussed for Bitcoin in Section 2.2.

4.4.1 Clustering addresses

To identify the usage of transparent addresses, we begin by recalling the “multi-

input” heuristic for clustering Bitcoin addresses. In this heuristic, addresses that are

used as inputs to the same transaction are assigned to the same cluster. In Bitcoin,
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this heuristic can be applied to all transactions, as they are all transparent. In Zcash,

we perform this clustering as long as there are multiple input t-addresses.

Heuristic 1. If two or more t-addresses are inputs in the same transaction (whether

that transaction is transparent, shielded, or mixed), then they are controlled by the

same entity.

In terms of false positives, we believe that these are at least as unlikely for

Zcash as they are for Bitcoin, as Zcash is a direct fork of Bitcoin and the standard

client has the same behavior. In fact, we are not aware of any input-mixing tech-

niques like CoinJoin [92] for Zcash, so could argue that the risk of false positives is

even lower than it is for Bitcoin. As this heuristic has already been used extensively

in Bitcoin, we thus believe it to be realistic for use in Zcash.

We implemented this heuristic by defining each t-address as a node in a graph,

and adding an (undirected) edge in the graph between addresses that had been input

to the same transaction. The connected components of the graph then formed the

clusters, which represent distinct entities controlling potentially many addresses.

The result was a set of 560,319 clusters, of which 97,539 contained more than a

single address.

As in Bitcoin, using just this one heuristic is already quite effective but does

not capture the common usage of change addresses, in which a transaction sends

coins to the actual recipient but then also sends any coins left over in the input back

to the sender. Meiklejohn et al. [96] use in their analysis a heuristic based on this

behavior, but warn that it is somewhat fragile. Indeed, their heuristic seems largely

dependent on the specific behavior of several large Bitcoin services, so we chose not

to implement it in its full form. Nevertheless, we did use a related Zcash-specific

heuristic in our case study of the Shadow Brokers in Section 4.7.

Heuristic 2. If one (or more) address is an input t-address in a vJoinSplit transac-

tion and a second address is an output t-address in the same vJoinSplit transaction,

then if the size of zOut is 1 (i.e., this is the only transparent output address), the

second address belongs to the same user who controls the input addresses.
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To justify this heuristic, we observe that users may not want to deposit all

of the coins in their address when putting coins into the pool, in which case they

will have to make change. The only risk of a false positive is if users are instead

sending money to two separate individuals, one using a z-address and one using a

t-address. One notable exception to this rule is users of the zcash4win wallet. Here,

the address of the wallet operator is an output t-address if the user decides to pay the

developer fee, so it would produce exactly this type of transaction for users putting

money into the shielded pool. This address is identifiable, however, so these types

of transactions can be omitted from our analysis. Nevertheless, due to concerns

about the safety of this heuristic (i.e., its ability to avoid false positives), we chose

not to incorporate it into our general analysis below.

4.4.2 Tagging addresses

Having now obtained a set of clusters, we next sought to assign names to them.

To accomplish this, we performed a scaled-down version of the techniques used by

Meiklejohn et al. [96]. In particular, given that Zcash is still relatively new, there are

not many different types of services that accept Zcash. We thus restricted ourselves

to interacting with exchanges.

We first identified the top ten Zcash exchanges according to volume

traded [40]. We then created an account with each exchange and deposited a

small quantity of ZEC into it, tagging as we did the output t-addresses in the re-

sulting transaction as belonging to the exchange. We then withdrew this amount

to our own wallet, and again tagged the t-addresses (this time on the sender side)

as belonging to the exchange. We occasionally did several deposit transactions if

it seemed likely that doing so would tag more addresses. Finally, we also inter-

acted with ShapeShift, which as mentioned in Section 5.2 allows users to move

amongst cryptocurrencies without the need to create an account. Here we did a

single “shift” into Zcash and a single shift out. A summary of our interactions with

all the different exchanges is in Table 4.2.

Finally, we collected the publicized addresses of the founders [162], as well as

addresses from known mining pools. For the latter we started by scraping the tags of
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Service Cluster # deposits # withdrawals

Binance 7 1 1
Bitfinex 3 4 1
Bithumb 14 2 1
Bittrex 1 1 1
Bit-z 30 2 1
Exmo 4 2 1
HitBTC 18 1 1
Huobi 26 2 1
Kraken 12 1 1
Poloniex 0 1 1

ShapeShift 2 1 1
zcash4win 139 1 2

Table 4.2: The services we interacted with, the identifier of the cluster they were associated
with after running Heuristic 1, and the number of deposits and withdrawals we
did with them. The first ten are exchanges, ShapeShift is an inter-cryptocurrency
exchange, and zcash4win is a Windows-based Zcash client.

these addresses from the Zchain explorer [164]. We then validated them against the

blocks advertised on some of the websites of the mining pools themselves (which

we also scraped) to ensure that they were the correct tags; i.e., if the recipient of

the coingen transaction in a given block was tagged as belonging to a given mining

pool, then we checked to see that the block had been advertised on the website of

that mining pool. We then augmented these sets of addresses with the addresses

tagged as belonging to founders and miners according to the heuristics developed

in Section 4.5. We present these heuristics in significantly more detail there, but

they resulted in us tagging 123 founder addresses and 110,918 miner addresses

(belonging to a variety of different pools).

4.4.3 Results

As mentioned in Section 4.4.1, running Heuristic 1 resulted in 560,319 clusters,

of which 97,539 contained more than a single address. We assigned each cluster

a unique identifier, ordered by the number of addresses in the cluster, so that the

biggest cluster had identifier 0.
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4.4.3.1 Exchanges and wallets

As can be seen in Table 4.2, many of the exchanges are associated with some of

the biggest clusters, with four out of the top five clusters belonging to popular ex-

changes. In general, we found that the top five clusters accounted for 11.21% of all

transactions. Identifying exchanges is important, as it makes it possible to discover

where individual users may have purchased their ZEC. Given existing and emerg-

ing regulations, they are also the one type of participant in the Zcash ecosystem that

might know the real-world identity of users.

In many of the exchange clusters, we also identified large fractions of addresses

that had been tagged as miners. This implies that individual miners use the ad-

dresses of their exchange accounts to receive their mining reward, which might be

expected if their goal is to cash out directly. We found some, but far fewer, founder

addresses at some of the exchanges as well.

Our clustering also reveals that ShapeShift (Cluster 2) is fairly heavily used:

it had received over 1.1M ZEC in total and sent roughly the same. Unlike the

exchanges, its cluster contained a relatively small number of miner addresses (54),

which fits with its usage as a way to shift money, rather than hold it in a wallet.

4.4.3.2 Mining pools and founders

Although mining pools and founders account for a large proportion of the activity

in Zcash (as we explore in Section 4.5), many re-use the same small set of addresses

frequently, so do not belong to large clusters. For example, Flypool had three single-

address clusters while Coinotron, coinmine.pl, Slushpool and Nanopool each had

two single-address clusters. (A list of mining pools can be found in Table 4.4 in

Section 4.5.2). Of the coins that we saw sent from clusters associated with mining

pools, 99.8% of it went into the shielded pool, which further validates both our

clustering and tagging techniques.

4.4.3.3 Philanthropists

Via manual inspection, we identified three large organizations that accept Zcash

donations: the Internet Archive, torservers.net, and Wikileaks. Of these,

torservers.net
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torservers.net accepts payment only via a z-address, so we cannot identify their

transactions (Wikileaks accepts payment via a z-address too, but also via a t-

address). Of the 31 donations to the Internet Archive that we were able to identify,

which totaled 17.3 ZEC, 9 of them were made anonymously (i.e., as z-to-t transac-

tions). On the other hand, all of the 20 donations to Wikileak’s t-address were made

as t-to-t transactions. None of these belong to clusters, as they have never sent a

transaction.

Most of the donations are small quantities of ZEC. For example, the transparent

donations to wikileaks ranged between 0.00065 ZEC and 1.4 ZEC with a median

donation of 0.035 ZEC.

4.5 Interactions with the Shielded Pool
What makes Zcash unique is of course not its t-addresses (since these essentially

replicate the functionality of Bitcoin), but its shielded pool. To that end, this section

explores interactions with the pool at its endpoints, meaning the deposits into (t-to-

z) and withdrawals out of the pool (z-to-t). We then explore interactions within the

pool (z-to-z transactions) in Section 4.6.

To begin, we consider just the amounts put into and taken out of the pool. Over

time, 3,901,124 ZEC have been deposited into the pool,3 and 3,788,889 have been

withdrawn. Figure 4.4 plots both deposits and withdrawals over time.

This figure shows a near-perfect reflection of deposits and withdrawals,

demonstrating that most users not only withdraw the exact number of ZEC they

deposit into the pool, but do so very quickly after the initial deposit. As we see

in Sections 4.5.1 and 4.5.2, this phenomenon is accounted for almost fully by the

founders and miners. Looking further at the figure, we can see that the symmetry is

broken occasionally, and most notably in four “spikes”: two large withdrawals, and

two large deposits. Some manual investigation revealed the following:

“The early birds” The first withdrawal spike took place at block height 30,900,

which was created in December 2016. The cause of the spike was a single trans-
3This is greater than the total number of generated coins, as all coins must be deposited into the

pool at least once, by the miners or founders, but may then go into and out of the pool multiple times.

torservers.net
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Figure 4.4: Over time, the amount of ZEC put into the shielded pool (in red) and the amount
taken out of the pool (in blue).

action in which 7,135 ZEC was taken out of the pool; given the exchange rate

at that time of 34 USD per ZEC, this was equivalent to 242,590 USD. The coins

were distributed across 15 t-addresses, which initially we had not tagged as be-

longing to any named user. After running the heuristic described in Section 4.5.1,

however, we tagged all of these addresses as belonging to founders. In fact, this

was the very first withdrawal that we identified as being associated with founders.

“Secret Santa” The second withdrawal spike took place on December 25 2017,

at block height 242,642. In it, 10,000 ZEC was distributed among 10 different

t-addresses, each receiving 1,000 ZEC. None of these t-addresses had done a

transaction before then, and none have been involved in one since (i.e., the coins

received in this transaction have not yet been spent).

“One-man wolf packs” Both of the deposit spikes in the graph correspond to sin-

gle large deposits from unknown t-addresses that, using our analysis from Sec-

tion 4.4, we identified as residing in single-address clusters. For the first spike,

however, many of the deposited amounts came directly from a founder address

identified by our heuristics (Heuristic 3), so given our analysis in Section 4.5.1

we believe this may also be associated with the founders.

While this figure already provides some information about how the pool is
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Figure 4.5: Over time, the amount of ZEC deposited into the shielded pool by miners,
founders, and others.

used (namely that most of the money put into it is withdrawn almost immediately

afterwards), it does not tell us who is actually using the pool. For this, we attempt to

associate addresses with the types of participants identified in Section 4.2: founders,

miners, and ‘other’ (encompassing both services and individual users).

When considering deposits into the shielded pool, it is easy to associate ad-

dresses with founders and miners, as the consensus rules dictate that they must put

their block rewards into the shielded pool before spending them further.

As described in Section 4.4.2, we tagged founders according to the Zcash pa-

rameters, and tagged as miners all recipients of coingen transactions that were not

founders. We then used these tags to identify a founder deposit as any t-to-z trans-

action using one or more founder addresses as input, and a miner deposit as any

t-to-z transaction using one or more miner addresses as input. The results are in

Figure 4.5.

Looking at this figure, it is clear that miners are the main participants putting

money into the pool. This is not particularly surprising, given that all the coins they

receive must be deposited into the pool at least once, so if we divide that number of

coins by the total number deposited we would expect at least 63.7% of the deposits

to come from miners. (The actual number is 76.7%.) Founders, on the other hand,
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Figure 4.6: The addresses that have put more than 10,000 ZEC into the shielded pool over
time, where the size of each node is proportional to the value it has put into
the pool. The addresses of miners are green, of founders are orange, and of
unknown ‘other’ participants are purple.

don’t put as much money into the pool (since they don’t have as much to begin with),

but when they do they put in large amounts that cause visible step-like fluctuations

to the overall line.

In terms of the heaviest users, we looked at the individual addresses that had

put more than 10,000 ZEC into the pool. The results are in Figure 4.6.

In fact, this figure incorporates the heuristics we develop in Sections 4.5.1

and 4.5.2, although it looked very similar when we ran it before applying our heuris-

tics (which makes sense, since our heuristics mainly act to link z-to-t transactions).

Nevertheless, it demonstrates again that most of the heavy users of the pool are

miners, with founders also depositing large amounts but spreading them over a

wider variety of addresses. Of the four ‘other’ addresses, one of them belonged

to ShapeShift, and the others belong to untagged clusters.

While it is interesting to look at t-to-z transactions on their own, the main

intention of the shielded pool is to provide an anonymity set, so that when users

withdraw their coins it is not clear whose coins they are. In that sense, it is much

more interesting to link together t-to-z and z-to-t transactions, which acts to reduce
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(b) Founder heuristic
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(c) Founder and miner heuristics

Figure 4.7: The z-to-t transactions we associated with miners, founders, and ‘other’, after
running some combination of our heuristics, in millions of transactions.
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the anonymity set. More concretely, if a t-to-z transaction can be linked to a z-

to-t transaction, then those coins can be “ruled out” of the anonymity set of future

users withdrawing coins from the pool. We thus devote our attention to this type of

analysis for the rest of the section.

The most naı̈ve way to link together these transactions would be to see if the

same addresses are used across them; i.e., if a miner uses the same address to with-

draw their coins as it did to deposit them. By running this simple form of linking,

we see the results in Figure 4.7a. This figure shows that we are not able to identify

any withdrawals as being associated with founders, and only a fairly small number

as associated with miners: 49,280 transactions in total, which account for 13.3% of

the total value in the pool.

Nevertheless, using heuristics that we develop for identifying founders (as de-

tailed in Section 4.5.1) and miners (Section 4.5.2), we are able to positively link

most of the z-to-t activity with one of these two categories, as seen in Figures 4.7b

and 4.7c. In the end, of the 177,009 z-to-t transactions, we were able to tag 120,629

(or 68%) of them as being associated with miners, capturing 52.1% of the value

coming out of the pool, and 2,103 of them as being associated with founders (cap-

turing 13.5% of the value). We then examine the remaining 30-35% of the activity

surrounding the shielded pool in Section 4.5.3.

4.5.1 Founders

After comparing the list of founder addresses against the outputs of all coingen

transactions, we found that 14 of them had been used. Using these addresses, we

were able to identify founder deposits into the pool, as already shown in Figure 4.5.

Table 4.3 provides a closer inspection of the usage of each of these addresses.

This table shows some quite obvious patterns in the behavior of the founders.

At any given time, only one address is “active,” meaning it receives rewards and

deposits them into the pool. Once it reaches the limit of 44,272.5 ZEC, the next

address takes its place and it is not used again. This pattern has held from the third

address onwards. What’s more, the amount deposited was often the same: exactly

249.9999 ZEC, which is roughly the reward for 100 blocks. This was true of 74.9%



4.5. Interactions with the Shielded Pool 71

# Deposits Total value # Deposits (249)

1 548 19600.4 0
2 252 43944.6 153
3 178 44272.5 177
4 192 44272.5 176
5 178 44272.5 177
6 178 44272.5 177
7 178 44272.5 177
8 178 44272.5 177
9 190 44272.5 176

10 188 44272.5 176
11 190 44272.5 176
12 178 44272.5 177
13 191 44272.5 175
14 70 17500 70

Total 2889 568042.5 2164

Table 4.3: The behaviour of each of the 14 active founder addresses, in terms of the number
of deposits into the pool, the total value deposited (in ZEC), and the number of
deposits carrying exactly 249.9999 ZEC in value.

of all founder deposits, and 96.2% of all deposits from the third address onwards.

There were only ever five other deposits into the pool carrying value between 249

and 251 ZEC (i.e., carrying a value close but not equal to 249.9999 ZEC).

Thus, while we were initially unable to identify any withdrawals associated

with the founders (as seen in Figure 4.7a), these patterns indicated an automated

use of the shielded pool that might also carry into the withdrawals. Upon examining

the withdrawals from the pool, we did not find any with a value exactly equal to

249.9999 ZEC. We did, however, find 1,953 withdrawals of exactly 250.0001 ZEC

(and 1,969 carrying a value between 249 and 251 ZEC, although we excluded the

extra ones from our analysis).

The value alone of these withdrawals thus provides some correlation with the

deposits, but to further explore it we also looked at the timing of the transactions.

When we examined the intervals between consecutive deposits of 249.9999 ZEC,

we found that 85% happened within 6-10 blocks of the previous one. Similarly,

when examining the intervals between consecutive withdrawals of 250.0001 ZEC,

we found that 1,943 of the 1,953 withdrawals also had a proximity of 6-10 blocks.

Indeed, both the deposits and the withdrawals proceeded in step-like patterns, in
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Figure 4.8: Over time, the founder deposits into the pool (in red) and withdrawals from the
pool (in blue), after running Heuristic, in tens of thousands of transactions 3.

which many transactions were made within a very small number of blocks (resulting

in the step up), at which point there would be a pause while more block rewards were

accumulated (the step across). This pattern is visible in Figure 4.8, which shows

the deposit and withdrawal transactions associated with the founders. Deposits are

typically made in few large steps, whereas withdrawals take many smaller ones.

Heuristic 3. Any z-to-t transaction carrying 250.0001 ZEC in value is done by the

founders.

In terms of false positives, we cannot truly know how risky this heuristic is,

short of asking the founders. This is in contrast to the t-address clustering heuristics

presented in Section 4.4, in which we were not attempting to assign addresses to a

specific owner, so could validate the heuristics in other ways. Nevertheless, the high

correlation between both the value and timing of the transactions led us to believe

in the reliability of this heuristic.

As a result of running this heuristic, we added 75 more addresses to our initial

list of 48 founder addresses (of which, again, only 14 had been used). Aside from

the correlation showed in Figure 4.8, the difference in terms of our ability to tag

founder withdrawals is seen in Figure 4.7b.
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Name Addresses t-to-z z-to-t

Flypool 3 65631 3
F2Pool 1 742 720
Nanopool 2 8319 4107
Suprnova 1 13361 0
Coinmine.pl 2 3211 0
Waterhole 1 1439 5
BitClub Pool 1 196 1516
MiningPoolHub 1 2625 0
Dwarfpool 1 2416 1
Slushpool 1 941 0
Coinotron 2 9726 0
Nicehash 1 216 0
MinerGate 1 13 0
Zecmine.pro 1 6 0

Table 4.4: A summary of our identified mining pool activity, in terms of the number of
associated addresses used in coingen transactions, and the numbers of each type
of transaction interacting with the pool.

4.5.2 Miners

The Zcash protocol specifies that all newly generated coins are required to be put

into the shielded pool before they can be spent further. As a result, we expect

that a large quantity of the ZEC being deposited into the pool are from addresses

associated with miners.

4.5.2.1 Deposits

As discussed earlier and seen in Figure 4.5, it is easy to identify miner deposits

into the pool due to the fact that they immediately follow a coin generation. Before

going further, we split the category of miners into individual miners, who operate

on their own, and mining pools, which represent collectives of potentially many in-

dividuals. In total, we gathered 19 t-addresses associated with Zcash mining pools,

using the scraping methods described in Section 4.4.2. Table 4.4 lists these min-

ing pools, as well as the number of addresses they control and the number of t-to-z

transactions we associated with them. Figure 4.9 plots the value of their deposits

into the shielded pool over time.

In this figure, we can clearly see that the two dominant mining pools are Fly-

pool and F2Pool. Flypool consistently deposits the same (or similar) amounts,
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Figure 4.9: Over time, the value of deposits made by known mining pools into the shielded
pool, in hundreds of thousands of transactions.

which we can see in their linear representation. F2Pool, on the other hand, has

bursts of large deposits mixed with periods during which it is not very active, which

we can also see reflected in the graph. Despite their different behaviors, the amount

deposited between the two pools is similar.

4.5.2.2 Withdrawals

While the withdrawals from the pool do not solely re-use the small number of min-

ing addresses identified using deposits (as we saw in our naı̈ve attempt to link miner

z-to-t transactions in Figure 4.7a), they do typically re-use some of them, so can fre-

quently be identified anyway.

In particular, mining pool payouts in Zcash are similar to how many of them

are in Bitcoin [47, 96]. The block reward is often paid into a single address, con-

trolled by the operator of the pool, and the pool operator then deposits some set of

aggregated block rewards into the shielded pool. They then pay the individual re-

ward to each of the individual miners as a way of “sharing the pie,” which results in

z-to-t transactions with many outputs. (In Bitcoin, some pools opt for this approach

while some form a “peeling chain” in which they pay each individual miner in a

separate transaction, sending the change back to themselves each time.) In the pay-

outs for some of the mining pools, the list of output t-addresses sometimes includes
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one of the t-addresses known to be associated with the mining pool already. We

thus tag these types of payouts as belonging to the mining pool, according to the

following heuristic:

Heuristic 4. If a z-to-t transaction has over 100 output t-addresses, one of which be-

longs to a known mining pool, then we label the transaction as a mining withdrawal

(associated with that pool), and label all non-pool output t-addresses as belonging

to miners.

As with Heuristic 3, short of asking the mining pool operators directly it is im-

possible to validate this heuristic. Nevertheless, given the known operating structure

of Bitcoin mining pools and the way this closely mirrors that structure, we again be-

lieve it to be relatively safe.

As a result of running this heuristic, we tagged 110,918 addresses as belonging

to miners, and linked a much more significant portion of the z-to-t transactions, as

seen in Figure 4.7c. As the last column in Table 4.4 shows, however, this heuristic

captured the activity of only a small number of the mining pools, and the large jump

in linked activity is mostly due to the high coverage with F2Pool (one of the two

richest pools). This implies that further heuristics developed specifically for other

pools, such as Flypool, would increase the linkability even more. Furthermore, a

more active strategy in which we mined with the pools to receive payouts would

reveal their structure, at which point (according to the 1.1M deposited by Flypool

shown in Figure 4.9 and the remaining value of 1.2M attributed to the ‘other’ cate-

gory shown in Figure 4.7c) we would shrink the anonymity set even further.4

4.5.3 Other Entities

Once the miners and founders have been identified, we can assume the remaining

transactions belong to more general entities. In this section we look into different

means of categorizing these entities in order to identify how the shielded pool is

being used.

4It is possible that we have already captured some of the Flypool activity, as many of the miners
receive payouts from multiple pools. We thus are not claiming that all remaining activity could be
attributed to Flypool, but potentially some substantial portion.
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In particular, we ran the heuristic due to Quesnelle [122], which said that if a

unique value (i.e., a value never seen in the blockchain before or since) is deposited

into the pool and then, after some short period of time, the exact same value is

withdrawn from the pool, the deposit and the withdrawal are linked in what he calls

a round-trip transaction.

Heuristic 5. [122] For a value v, if there exists exactly one t-to-z transaction carry-

ing value v and one z-to-t transaction carrying value v, where the z-to-t transaction

happened after the t-to-z one and within some small number of blocks, then these

transactions are linked.

In terms of false positives, the fact that the value is unique in the blockchain

means that the only possibility of a false positive is if some of the z-to-z transac-

tions split or aggregated coins in such a way that another deposit (or several other

deposits) of a different amount were altered within the pool to yield an amount

identical to the initial deposit. While this is possible in theory, we observe that

of the 12,841 unique values we identified, 9,487 of them had eight decimal places

(the maximum number in Zcash), and 98.9% of them had more than three decimal

places. We thus view it as highly unlikely that these exact values were achieved via

manipulations in z-to-z transactions.

By running this heuristic, we identified 12,841 unique values, which means we

linked 12,841 transactions. The values total 1,094,513.23684 ZEC and represent

28.5% of all coins ever deposited in the pool. Interestingly, most (87%) of the linked

coins were in transactions attributed to the founders and miners, so had already

been linked by our previous heuristics. We believe this lends further credence to

their soundness. In terms of the block interval, we ran Heuristic 5 for every interval

between 1 and 100 blocks; the results are in Figure 4.10.

As this figure shows, even if we assume a conservative block interval of 10

(meaning the withdrawal took place 25 minutes after the deposit), we still capture

70% of the total value, or over 700K ZEC. If we require the withdrawal to have

taken place within an hour of the deposit, we get 83%.
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Figure 4.10: The value linked by Heuristic 5, as a function of the block interval required
between the deposit and withdrawal transactions.

4.6 Interactions within the Shielded Pool
In this section we consider private transactions; i.e., z-to-z transactions that interact

solely with the shielded pool. As seen in Section 4.3.1, these transactions form a

small percentage of the overall transactions. However, z-to-z transactions form a

crucial part of the anonymity core of Zcash. In particular, they make it difficult to

identify the round-trip transactions from Heuristic 5.

Our analysis identified 6,934 z-to-z transactions, with 8,444 vJoinSplits. As

discussed in Section 2.3.1, the only information revealed by z-to-z transactions is

the miner’s fee, the time of the transaction, and the number of vJoinSplits used as

input. Of these, we looked at the time of transactions and the number of vJoinSplits

in order to gain some insight as to the use of these operations.

We found that 93% of z-to-z transactions took just one vJoinSplit as input.

Since each vJoinSplit can have at most two shielded outputs as its input, the major-

ity of z-to-z transactions thus take no more than two shielded outputs as their input.

This increases the difficulty of categorizing z-to-z transactions, because we cannot

know if a small number of users are making many transactions, or many users are

making one transaction.

In looking at the timing of z-to-z transactions, however, we conclude that it is
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Figure 4.11: The number of z-to-z vJoinSplit transactions over time.

likely that a small number of users were making many transactions. Figure 4.11

plots the cumulative number of vJoinSplits over time. The occurrences of vJoin-

Splits are somewhat irregular, with 17% of all vJoinSplits occurring in January

2017. There are four other occasions when a sufficient number of vJoinSplits oc-

cur within a sufficiently short period of time as to be visibly noticeable. It seems

likely that these occurrences belong to the same group of users, or at least by users

interacting with the same service.

Finally, looking back at the number of t-to-z and z-to-t transactions identified

with mining pools in Table 4.4, it is possible that BitClub Pool is responsible for

up to 1,300 of the z-to-z transactions, as it had 196 deposits into the pool and 1,516

withdrawals. This can happen only because either (1) the pool made extra z-to-z

transactions, or (2) it sent change from its z-to-t transactions back into the shielded

pool. As most of BitClub Pool’s z-to-t transactions had over 200 output t-addresses,

however, we conclude that the former explanation is more likely.

4.7 Case Study: The Shadow Brokers
The Shadow Brokers (TSB) are a hacker collective that has been active since the

summer of 2016, and that leaks tools supposedly created by the NSA. Some of these

leaks are released as free samples, but many are sold via auctions and as monthly
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May/June July August September October

100 200
400

500 100
200
500

500

Table 4.5: Amounts charged for TSB monthly dumps, in ZEC. In July and September TSB
offered different prices depending on which exploits were being purchased.

bundles. Initially, TSB accepted payment only using Bitcoin. Later, however, they

began to accept Zcash for their monthly dump service. In this section we discuss

how we identified t-to-z transactions that could represent payments to TSB. We

identified twenty-four clusters (created using our analysis in Section 4.4) matching

our criteria for potential TSB customers, one of which could be a regular customer.

4.7.1 Techniques

In order to identify the transactions that are most likely to be associated with TSB,

we started by looking at their blog [142]. In May 2017, TSB announced that they

would be accepting Zcash for their monthly dump service. Throughout the summer

(June through August) they accepted both Zcash and Monero, but in September they

announced that they would accept only Zcash. Table 4.5 summarizes the amount

they were requesting in each of these months. The last blog post was made in

October 2017, when they stated that all subsequent dumps would cost 500 ZEC.

To identify potential TSB transactions, we thus looked at all t-to-z transactions

not associated with miners or founders that deposited either 100, 200, 400, or 500

ZEC ± 5 ZEC. Our assumption was that users paying TSB were not likely to be

regular Zcash users, but rather were using it with the main purpose of making the

payment. On this basis, addresses making t-to-z transactions of the above values

were flagged as a potential TSB customer if the following conditions held:

1. They did not get their funds from the pool; i.e., there were no z-to-t trans-

actions with this address as an output. Again, if this were a user mainly

engaging with Zcash as a way to pay TSB, they would need to to buy their

funds from an exchange, which engage only with t-addresses.

2. They were not a frequent user, in the sense that they had not made or received

more than 250 transactions (ever).
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3. In the larger cluster in which this address belonged, the total amount deposited

by the entire cluster into the pool within one month was within 1 ZEC of the

amounts requested by TSB. Here, because the resulting clusters were small

enough to treat manually, we applied not only Heuristic 1 but also Heuristic 2

(clustering by change), making sure to weed out false positives. Again, the

idea was that suspected TSB customers would not be frequent users of the

pool.

As with our previous heuristics, there is no way to quantify the false-positive

risks associated with this set of criteria, although we see below that many of the

transactions matching it did occur in the time period associated with TSB accep-

tance of Zcash. Regardless, given this limitation we are not claiming that our re-

sults are definitive, but do believe this to be a realistic set of criteria that might be

applied in the context of a law enforcement investigation attempting to narrow down

potential suspects.

4.7.2 Results

Our results, in terms of the number of transactions matching our requirements above

up until 17 January 2018, are summarized in Table 4.6. Before the first TSB blog

post in May, we found only a single matching transaction. This is very likely a false

positive, but demonstrates that the types of transactions we were seeking were not

common before TSB went live with Zcash. After the blog post, we flagged five

clusters in May and June for the requested amount of 100 ZEC. There were only

two clusters that was flagged for 500 ZEC, one of which was from August. No

transactions of any of the required quantities were flagged in September, despite the

fact that TSB switched to accepting only Zcash in September. This is possible for a

number of reasons: our criteria may have caused us to miss transactions, or maybe

there were no takers. From October onwards we flagged between 1-6 transactions

per month. It is hard to know if these represent users paying for old data dumps or

are simply false positives.

Four out of the 24 transactions in Table 4.6 are highly likely to be false pos-

itives. First, there is the deposit of 100 ZEC into the pool in January, before TSB
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Month 100 200 400 500

October (2016) 0 0 0 0
November 0 0 0 0
December 0 0 0 0
January (2017) 1 0 0 0
February 0 0 0 0
March 0 0 0 0
April 0 0 0 0
May (before) 0 0 0 0
May (after) 3 1 0 0
June 2 1 1 0
July 1 2 0 0
August 1 0 0 1
September 0 0 0 0
October 2 0 0 0
November 1 0 0 0
December 2 3 0 1
January (2018) 0 1 0 0

Table 4.6: Number of clusters that put the required amounts (±1 ZEC) into the shielded
pool.

announced their first blog post. This cluster put an additional 252 ZEC into the pool

in March, so is likely just some user of the pool. Second and third, there are two

deposits of 200 ZEC into the pool in June, before TSB announced that one of the

July dump prices would cost 200 ZEC. Finally, there is a deposit of 400 ZEC into

the pool in June before TSB announced that one of the July dump prices would cost

400 ZEC.

Of the remaining clusters, there is one whose activity is worth discussing.

From this cluster, there was one deposit into the pool in June for 100 ZEC, one

in July for 200 ZEC, and one in August for 500 ZEC, matching TSB prices exactly.

The cluster belonged to a new user, and most of the money in this user’s cluster

came directly from Bitfinex (Cluster 3).

4.8 Discussion and Future work
Our heuristics would have been significantly less effective if the founders inter-

acting with the pool behaved in a less regular fashion. In particular, by always

withdrawing the same amount in the same time interval, it became possible to dis-
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tinguish founders withdrawing funds from other users. Given that the founders are

both highly invested in the currency and knowledgeable about how to use it in a

secure fashion, they are in the best place to ensure the anonymity set is large.

Ultimately, the only way for Zcash to truly ensure the size of its anonymity

set is to require all transactions to take place within the shielded pool, or otherwise

significantly expand the usage of it. This may soon be computationally feasible

given emerging advances in the underlying cryptographic techniques [153], or even

if more mainstream wallet providers like Jaxx roll out support for z-addresses. More

broadly, we view it as an interesting regulatory question whether or not mainstream

exchanges would continue to transact with Zcash if it switched to supporting only

z-addresses.

Our study was an initial exploration, and thus left many avenues open for fur-

ther exploration. For example, it may be possible to classify more z-to-z transac-

tions by analyzing the time intervals between the transactions in more detail, or by

examining other metadata such as the miner’s fee or even the size (in bytes) of the

transaction. Additionally, the behavior of mining pools could be further identified

by a study that actively interacts with them.

4.9 Conclusions
We present the first in-depth exploration of Zcash, with a particular focus on its

anonymity guarantees. To achieve this, we applied both well-known clustering

heuristics that have been developed for Bitcoin and attribution heuristics we de-

veloped ourselves that take into account Zcash’s shielded pool and its unique cast

of characters. As with previous empirical analyses of other cryptocurrencies, our

study has shown that most users are not taking advantage of the main privacy fea-

ture of Zcash at all. Furthermore, the participants who do engage with the shielded

pool do so in a way that is identifiable, which has the effect of significantly eroding

the anonymity of other users by shrinking the overall anonymity set.



Chapter 5

Tracing Transactions Across

Cryptocurrency Ledgers

5.1 Overview
For the past decade, cryptocurrencies such as Bitcoin have been touted for their

transformative potential, both as a new form of electronic cash and as a platform

to “re-decentralize” aspects of the Internet and computing in general. Tradition-

ally, criminals attempting to cash out illicit funds would have to use exchanges;

indeed, most tracking techniques rely on identifying the addresses associated with

these exchanges as a way to observe when these deposits happen [96]. Nowadays,

however, exchanges typically implement strict Know Your Customer/Anti-Money

Laundering (KYC/AML) policies to comply with regulatory requirements, mean-

ing criminals (and indeed all users) risk revealing their real identities when using

them. Users also run risks when storing their coins in accounts at custodial ex-

changes, as exchanges may be hacked or their coins may otherwise become in-

accessible [94, 130]. As an alternative, there have emerged in the past few years

frictionless trading platforms such as ShapeShift1 and Changelly,2 in which users

are able to trade between cryptocurrencies without having to store their coins with

the platform provider. Furthermore, while ShapeShift now requires users to have

verified accounts [151], this was not the case before October 2018.

1https://shapeshift.io
2https://changelly.com

https://shapeshift.io
https://changelly.com
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Part of the reason for these trading platforms to exist is the sheer rise in the

number of different cryptocurrencies: according to the popular cryptocurrency data

tracker CoinMarketCap there were 36 cryptocurrencies in September 2013, only

7 of which had a stated market capitalization of over 1 million USD,3 whereas in

January 2019 there were 2117 cryptocurrencies, of which the top 10 had a mar-

ket capitalization of over 100 million USD. Given this proliferation of new cryp-

tocurrencies and platforms that make it easy to transact across them, it becomes

important to consider not just whether or not flows of coins can be tracked within

the transaction ledger of a given currency, but also if they can be tracked as coins

move across their respective ledgers as well. This is especially important given

that there are documented cases of criminals attempting to use these cross-currency

trades to obscure the flow of their coins: the WannaCry ransomware operators, for

example, were observed using ShapeShift to convert their ransomed bitcoins into

Monero [43]. More generally, these services have the potential to offer an insight

into the broader cryptocurrency ecosystem and the thousands of currencies it now

contains.

In this Chapter, we initiate an exploration of the usage of these cross-currency

trading platforms, and the potential they offer in terms of the ability to track flows of

coins as they move across different transaction ledgers. Here we rely on three dis-

tinct sources of data: the cryptocurrency blockchains, the data collected via our own

interactions with these trading platforms, and — as we describe in Section 5.3 — the

information offered by the platforms themselves via their public APIs.

We begin in Section 5.4 by identifying the specific on-chain transactions as-

sociated with an advertised ShapeShift transaction, which we are able to do with a

relatively high degree of success (identifying both the deposit and withdrawal trans-

actions 81.91% of the time, on average). We then describe in Section 5.5 the dif-

ferent transactional patterns that can be traced by identifying the relevant on-chain

transactions, focusing specifically on patterns that may be indicative of trading or

money laundering, and on the ability to link addresses across different currency

3https://coinmarketcap.com/historical/20130721/

https://coinmarketcap.com/historical/20130721/
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ledgers. We then move in Section 5.6 to consider both old and new heuristics for

clustering together addresses associated with ShapeShift, with particular attention

paid to our new heuristic concerning the common social relationships revealed by

the usage of ShapeShift. Finally, we bring all the analysis together by applying it to

several case studies in Section 5.7. Again, our particular focus in this last section

is on the phenomenon of trading and other profit-driven activity, and the extent to

which usage of the ShapeShift platform seems to be motivated by criminal activity

or a more general desire for anonymity.

5.2 Background

5.2.1 Digital asset trading platforms

In contrast to a traditional exchange, a digital asset trading platform allows users

to move between different cryptocurrencies without needing to set up an account,

and thus without needing to following KYC/AML regulations. Instead, a user

approaches the service and selects a supported input currency curIn (i.e., the cur-

rency from which they would like to move money) and a supported output currency

curOut (the currency which they would like to obtain). A user additionally specifies

a destination address addru in the curOut blockchain, which is the address to which

the output currency will be sent. The service then presents the user with an exchange

rate rate and an address addrs in the curIn blockchain to which to send money. The

user then sends this address the amount amt in curIn they wish to convert, and after

some delay the service sends the appropriate amount of the output currency to the

specified destination address. This means that an interaction with either of these

services results in two transactions: one on the curIn blockchain sending amt to

addrs, and one on the curOut blockchain sending (roughly) rate ·amt to addru.

This describes an interaction with an abstracted platform; today, the two best-

known examples are ShapeShift and Changelly, although Changelly does require

account creation. Each platform supports dozens of cryptocurrencies, ranging from

better-known ones such as Bitcoin and Ethereum to lesser-known ones such as

FirstBlood and Clams. Many of the supported cryptocurrencies actually operate as
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ERC20 or BTC tokens, meaning they run as contracts on top of the Ethereum and

Bitcoin blockchains, respectively, rather than as their own standalone platforms. In

Section 5.3, we describe in more depth the operations of these concrete platforms

and our own interactions with them.

5.3 Data Collection and Statistics
In this section, we describe our data sources, as well as some preliminary statistics

about the collected data. We begin in Section 5.3.1 by describing our own inter-

actions with Changelly, a trading platform with a limited personal API. We then

describe in Section 5.3.2 both our own interactions with ShapeShift, and the data

we were able to scrape from their public API, which provided us with significant

insight into their overall set of transactions. Finally, we describe in Section 5.3.3

our collection of the data backing eight different cryptocurrencies.

5.3.1 Changelly

Changelly offers a simple API4 that allows registered users to carry out transactions

with the service. Using this API, we engaged in 22 transactions, using the most

popular ShapeShift currencies (Table 5.1) to guide our choices for curIn and curOut.

While doing these transactions, we observed that they would sometimes take

up to an hour to complete. This is because Changelly attempts to minimize double-

spending risk by requiring users to wait for a set number of confirmations (shown

to the user at the time of their transaction) in the curIn blockchain before executing

the transfer on the curOut blockchain. We used this observation to guide our choice

of parameters in our identification of on-chain transactions in Section 5.4.

5.3.2 ShapeShift

ShapeShift’s API5 allows users to execute their own transactions, of which we

did 18 in total. As with Changelly, we were able to gain some valuable in-

sights about the operation of the platform via these personal interactions. Whereas

ShapeShift did not disclose the number of confirmations they waited for on the curIn

4https://api-docs.changelly.com/
5https://info.shapeshift.io/api

https://api-docs.changelly.com/
https://info.shapeshift.io/api
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blockchain, we again observed long delays, indicating that they were also waiting

for a sufficient number.

Beyond these personal interactions, the API provides information on the op-

eration of the service as a whole. Most notably, it provides three separate pieces

of information: (1) the current trading rate between any pair of cryptocurrencies,

(2) a list of up to 50 of the most recent transactions that have taken place (across

all users), and (3) full details of a specific ShapeShift transaction given the address

addrs in the curIn blockchain (i.e., the address to which the user sent their coins).

For the trading rates, ShapeShift provides the following information for all

cryptocurrency pairs (curIn,curOut): the rate, the limit (i.e., the maximum that can

be exchanged), the minimum that can be exchanged, and the miner fee (denomi-

nated in curOut). For the 50 most recent transactions, information is provided in

the form: (curIn,curOut,amt, t, id), where the first three of these are as discussed

in Section 5.2.1, t is a UNIX timestamp, and id is an internal identifier for this

transaction. For the transaction information, when provided with a specific addrs

ShapeShift provides the tuple (status,address,withdraw, inCoin, inType,outCoin,

outType, tx, txURL,error). The status field is a flag that is either complete, to

mean the transaction was successful; error, to mean an issue occurred with the

transaction or the queried address was not a ShapeShift address; or no_deposits,

to mean a user initiated a transaction but did not send any coins. The error field ap-

pears when an error is returned and gives a reason for the error. The address field is

the same address addrs used by ShapeShift, and withdraw is the address addru (i.e.,

the user’s recipient address in the curOut blockchain). inType and outType are the

respective curIn and curOut currencies and inCoin is the amt received. outCoin is

the amount sent in the curOut blockchain. Finally, tx is the transaction hash in the

curOut blockchain and txURL is a link to this transaction in an online explorer.

Using a simple Web scraper, we downloaded the transactions and rates every

five seconds for close to thirteen months: from November 27 2017 until December

23 2018. This resulted in a set of 2,843,238 distinct transactions. Interestingly, we

noticed that several earlier test transactions we did with the platform did not show up



5.3. Data Collection and Statistics 88

Figure 5.1: The total number of transactions per day reported via ShapeShift’s API, and the
numbers broken down by cryptocurrency (where a transaction is attributed to a
coin if it is used as either curIn or curOut). The dotted red line indicates the
BTC-USD exchange rate, and the horizontal dotted black line indicates when
KYC was introduced into ShapeShift.

in their list of recent transactions, which suggests that their published transactions

may in fact underestimate their overall activity.

5.3.2.1 ShapeShift currencies

In terms of the different cryptocurrencies used in ShapeShift transactions, their pop-

ularity was distributed as seen in Figure 5.1. As this figure depicts, the overall ac-

tivity of ShapeShift is (perhaps unsurprisingly) correlated with the price of Bitcoin

in the same time period. At the same time, there is a decline in the number of trans-

actions after KYC was introduced that is not clearly correlated with the price of

Bitcoin (which is largely steady and declines only several months later).

ShapeShift supports dozens of cryptocurrencies, and in our data we observed

the use of 65 different ones. The most commonly used coins are shown in Table 5.1.

It is clear that Bitcoin and Ethereum are the most heavily used currencies, which

is perhaps not surprising given the relative ease with which they can be exchanged

with fiat currencies on more traditional exchanges, and their rank in terms of market

capitalization.
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Currency Abbr. Total curIn curOut

Ethereum ETH 1385509 892971 492538
Bitcoin BTC 1286772 456703 830069
Litecoin LTC 720047 459042 261005
Bitcoin Cash BCH 284514 75774 208740
Dogecoin DOGE 245255 119532 125723
Dash DASH 187869 113272 74597
Ethereum Classic ETC 179998 103177 76821
Zcash ZEC 154142 111041 43101

Table 5.1: The eight most popular coins used on ShapeShift, in terms of the total units
traded, and the respective units traded with that coin as curIn and curOut.

5.3.3 Blockchain data

For the cryptocurrencies we were interested in exploring further, it was also nec-

essary to download and parse the respective blockchains, in order to identify the

on-chain transactional behavior of ShapeShift and Changelly. It was not feasible to

do this for all 65 currencies used on ShapeShift (not to mention that given the low

volume of transactions for many of them, it would likely not yield additional in-

sights anyway), so we chose to focus instead on just the top 8, as seen in Table 5.1.

Together, these account for 95.7% of all ShapeShift transactions if only one of curIn

and/or curOut is one of the eight, and 60.5% if both are.

For each of these currencies, we ran a full node in order to download the en-

tire blockchain. For the ones supported by the BlockSci tool [78] (Bitcoin, Dash

and Zcash), we used it to parse and analyze their blockchains. BlockSci does

not, however, support the remaining five currencies. For these we thus parsed the

blockchains using Python scripts, stored the data as Apache Spark parquet files, and

analyzed them using custom scripts. In total, we ended up working with 654 GB of

raw blockchain data and 434 GB of parsed blockchain data.

5.4 Identifying Blockchain Transactions
In order to gain deeper insights about the way these trading platforms are used, it is

necessary to identify not just their internal transactions but also the transactions that

appear on the blockchains of the traded currencies. This section presents heuris-

tics for identifying these on-chain transactions, and the next section explores the

additional insights these transactions can offer.
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Recall from Section 5.2.1 that an interaction with ShapeShift results in the

deposit of coins from the user to the service on the curIn blockchain (which we

refer to as “Phase 1”), and the withdrawal of coins from the service to the user on

the curOut blockchain (“Phase 2”). To start with Phase 1, we thus seek to identify

the deposit transaction on the input (curIn) blockchain. Similarly to Portnoff et

al. [121], we consider two main requirements for identifying the correct on-chain

transaction: (1) that it occurred reasonably close in time to the point at which it

was advertised via the API, and (2) that the value it carried was identical to the

advertised amount.

For this first requirement, we look for candidate transactions as follows. Given

a ShapeShift transaction with timestamp t, we first find the block b (at some height

h) on the curIn blockchain that was mined at the time closest to t. We then look

at the transactions in all blocks with height in the range [h− δb,h+ δa], where δb

and δa are parameters specific to curIn. We looked at both earlier and later blocks

based on the observation in our own interactions that the timestamp published by

ShapeShift would sometimes be earlier and sometimes be later than the on-chain

transaction.

For each of our eight currencies, we ran this heuristic for every ShapeShift

transaction using curIn as the currency in question, with every possible combina-

tion of δb and δa ranging from 0 to 30. This resulted in a set of candidate transac-

tions with zero hits (meaning no matching transactions were found), a single hit, or

multiple hits. To rule out false positives, we initially considered as successful only

ShapeShift transactions with a single candidate on-chain transaction, although we

describe below an augmented heuristic that is able to tolerate multiple hits. We then

used the values of δb and δa that maximized the number of single-hit transactions

for each currency. As seen in Table 5.2, the optimal choice of these parameters

varies significantly across currencies, according to their different block rates; typi-

cally we needed to look further before or after for currencies in which blocks were

produced more frequently.

In order to validate the results of our heuristic for Phase 1, we use the addi-
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tional capability of the ShapeShift API described in Section 5.3.2. In particular,

we queried the API on the recipient address of every transaction identified by our

heuristic for Phase 1. If the response of the API was affirmative, we flagged the

recipient address as belonging to ShapeShift and we identified the transaction in

which it received coins as the curIn transaction. This also provided a way to iden-

tify the corresponding Phase 2 transaction on the curOut blockchain, as it is just the

tx field returned by the API. As we proceed only in the case that the API returns a

valid result, we gain ground-truth data in both Phase 1 and Phase 2. In other words,

this method serves to not only validate our results in Phase 1 but also provides a

way to identify Phase 2 transactions.

The heuristic described above is able to handle only single hits; i.e., the case

in which there is only a single candidate transaction. Luckily, it is easy to augment

this heuristic by again using the API. For example, assume we examine a BTC-

ETH ShapeShift transaction and we find three candidate transactions in the Bitcoin

blockchain after applying the basic heuristic described above. To identify which of

these transactions is the right one, we simply query the API on all three recipient

addresses and check that the status field is affirmative (meaning ShapeShift recog-

nizes this address) and that the outType field is ETH. In the vast majority of cases

this uniquely identifies the correct transaction out of the candidate set, meaning we

can use the API to both validate our results (i.e., we use it to eliminate potential

false positives, as described above) and to augment the heuristic by being able to

tolerate multiple candidate transactions. The augmented results for Phase 1 can be

found in the last column of Table 5.2 and clearly demonstrate the benefit of this

extra usage of the API. In the most dramatic example, we were able to go from

identifying the on-chain transactions for ShapeShift transactions involving Bitcoin

65.75% of the time with the basic heuristic to identifying them 76.86% of the time

with the augmented heuristic.

5.4.1 Accuracy of our heuristics

False negatives can occur for both of our heuristics when there are either too many

or too few matching transactions in the searched block interval. These are more
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Currency Parameters Basic % Augmented %

δb δa

BTC 0 1 65.76 76.86
BCH 9 4 76.96 80.23
DASH 5 5 84.77 88.65
DOGE 1 4 76.94 81.69
ETH 5 0 72.15 81.63
ETC 5 0 76.61 78.67
LTC 1 2 71.61 76.97
ZEC 1 3 86.94 90.54

Table 5.2: For the selected (optimal) parameters and for a given currency used as curIn, the
percentage of ShapeShift transactions for which we found matching on-chain
transactions for both the basic (time- and value-based) and the augmented (API-
based) Phase 1 heuristic. The augmented heuristic uses the API and thus also
represents our success in identifying Phase 2 transactions.

common for the basic heuristic, as described above and seen in Table 5.2, because

it is conservative in identifying an on-chain transaction only when there is one can-

didate. This rate could be improved by increasing the searched block radius, at the

expense of adding more computation and potentially increasing the false positive

rate.

False positives can occur for both of our heuristics if someone sends the same

amount as the ShapeShift transaction at roughly the same time, but this transaction

falls within our searched interval whereas the ShapeShift one doesn’t. In theory,

this should not be an issue for our augmented heuristic, since the API will make it

clear that the candidate transaction is not in fact associated with ShapeShift. In a

small number of cases (fewer than 1% of all ShapeShift transactions), however, the

API returned details of a transaction with different characteristics than the one we

were attempting to identify; e.g., it had a different pair of currencies or a different

value being sent. This happened because ShapeShift allows users to re-use an ex-

isting deposit address, and the API returns only the latest transaction using a given

address.

If we blindly took the results of the API, then this would lead to false positives

in our augmented heuristic for both Phase 1 and Phase 2. We thus ensured that the

transaction returned by the API had three things in common with the ShapeShift
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transaction: (1) the pair of currencies, (2) the amount being sent, and (3) the timing,

within the interval specified in Table 5.2. If there was any mismatch, we discarded

the transaction. For example, given a ShapeShift transaction indicating an ETH-

BTC shift carrying 1 ETH and occurring at time t, we looked for all addresses that

received 1 ETH at time t or up to 5 blocks earlier. We then queried the API on

these addresses and kept only those transactions which reported shifting 1 ETH to

BTC. While our augmented heuristic still might produce false positives in the case

that a user quickly makes two different transactions using the same currency pair,

value, and deposit address, we view this as unlikely, especially given the relatively

long wait times we observed ourselves when using the service (as mentioned in

Section 5.3.2).

5.4.2 Alternative Phase 2 identification

Given that our heuristic for Phase 2 involved just querying the API for the corre-

sponding Phase 1 transaction, it is natural to wonder what would be possible without

this feature of the API, or indeed if there are any alternative strategies for identifying

Phase 2 transactions. Indeed, it is possible to use a similar heuristic for identifying

Phase 1 transactions, by first looking for transactions in blocks that were mined

close to the advertised transaction time, and then looking for ones in which the

amount was close to the expected amount. Here the amount must be estimated ac-

cording to the advertised amt, rate, and fee. In theory, the amount sent should be

amt · rate− fee, although in practice the rate can fluctuate so it is important to look

for transactions carrying a total value within a reasonable error rate of this amount.

When we implemented and applied this heuristic, we found that our accuracy

in identifying Phase 2 transactions decreased significantly, due to the larger set of

transactions that carried an amount within a wider range (as opposed to an exact

amount, as in Phase 1) and the inability of this type of heuristic to handle multiple

candidate transactions. More importantly, this approach provides no ground-truth

information at all: by choosing conservative parameters it is possible to limit the

number of false positives, but this is at the expense of the false negative rate (as,

again, we observed in our own application of this heuristic) and in general it is not
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Figure 5.2: The different transactional patterns, according to how they interact with
ShapeShift and which phases are required to identify them.

guaranteed that the final set of transactions really are associated with ShapeShift.

As this is the exact guarantee we can get by using the API, we continue in the

rest of the paper with the results we obtained there, but nevertheless mention this

alternative approach in case this feature of the API is discontinued or otherwise

made unavailable.

5.5 Tracking Cross-Currency Activity
In the previous section, we saw that it was possible in many cases to identify the

on-chain transactions, in both the curIn and curOut blockchains, associated with the

transactions advertised by ShapeShift. In this section, we take this a step further and

show how linking these transactions can be used to identify more complex patterns

of behavior.

As shown in Figure 5.2, we consider these for three main types of transactions.

In particular, we look at (1) pass-through transactions, which represent the full flow

of money as it moves from one currency to the other via the deposit and withdrawal

transactions; (2) U-turns, in which a user who has shifted into one currency imme-

diately shifts back; and (3) round-trip transactions, which are essentially a combina-

tion of the first two and follow a user’s flow of money as it moves from one currency

to another and then back to the original one. Our interest in these particular patterns

of behavior is largely based on the role they play in tracking money as it moves

across the ledgers of different cryptocurrencies. In particular, our goal is to test

the validity of the implicit assumption made by criminal usage of the platform —

such as we examine further in Section 5.7 — that ShapeShift provides additional

anonymity beyond simply transacting in a given currency.

In more detail, identifying pass-through transactions allows us to create a link

between the input address(es) in the deposit on the curIn blockchain and the output
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address(es) in the withdrawal on the curOut blockchain.

Identifying U-turns allows us to see when a user has interacted with ShapeShift

not because they are interested in holding units of the curOut cryptocurrency, but

because they see other benefits in shifting coins back and forth. There are several

possible motivations for this: for example, traders may quickly shift back and forth

between two different cryptocurrencies in order to profit from differences in their

price. We investigate this possibility in Section 5.7.3. Similarly, people performing

money laundering or otherwise holding “dirty” money may engage in such behavior

under the belief that once the coins are moved back into the curIn blockchain, they

are “clean” after moving through ShapeShift regardless of what happened with the

coins in the curOut blockchain.

Finally, identifying round-trip transactions allows us to create a link between

the input address(es) in the deposit on the curIn blockchain with the output ad-

dress(es) in the later withdrawal on the curIn blockchain. Again, there are many

reasons why users might engage in such behavior, including the trading and money

laundering examples given above. As another example, if a curIn user wanted to

make an anonymous payment to another curIn user, they might attempt to do so

via a round-trip transaction (using the address of the other user in the second pass-

through transaction), under the same assumption that ShapeShift would sever the

link between their two addresses.

5.5.1 Pass-through transactions

Given a ShapeShift transaction from curIn to curOut, the methods from Section 5.4

already provide a way to identify pass-through transactions, as depicted in Fig-

ure 5.2a. In particular, running the augmented heuristic for Phase 1 transactions

identifies not only the deposit transaction in the curIn blockchain but also the

Phase 2 transaction (i.e., the withdrawal transaction in the curOut blockchain), as

this is exactly what is returned by the API. As discussed above, this has the effect

on anonymity of tracing the flow of funds across this ShapeShift transaction and

linking its two endpoints; i.e., the input address(es) in the curIn blockchain with the

output address(es) in the curOut blockchain. The results, in terms of the percent-
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Figure 5.3: For each pair of currencies, the number of transactions we identified as being
a pass-through from one to the other, as a percentage of the total number of
transactions between those two currencies.

ages of all possible transactions between a pair (curIn,curOut) for which we found

the corresponding on-chain transactions, are in Figure 5.3.

The figure demonstrates that our success in identifying these types of trans-

actions varied somewhat, and depended — not unsurprisingly — on our success in

identifying transactions in the curIn blockchain. This means that we were typically

least successful with curIn blockchains with higher transaction volumes, such as

Bitcoin, because we frequently ended up with multiple hits (although here we were

still able to identify more than 74% of transactions). In contrast, the dark stripes for

Dash and Zcash demonstrate our high level of success in identifying pass-through

transactions with those currencies as curIn, due to our high level of success in their

Phase 1 analysis in general (89% and 91% respectively). In total, across all eight

currencies we were able to identify 1,383,666 pass-through transactions.

5.5.2 U-turns

As depicted in Figure 5.2b, we consider a U-turn to be a pattern in which a user has

just sent money from curIn to curOut, only to turn around and go immediately back

to curIn. This means linking two transactions: the Phase 2 transaction used to send

money to curOut and the Phase 1 transaction used to send money back to curIn. In

terms of timing and amount, we require that the second transaction happens within
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30 minutes of the first, and that it carries within 1% of the value that was generated

by the first Phase 2 transaction. This value is returned by the ShapeShift API in the

outCoin field.

While the close timing and amount already give some indication that these two

transactions are linked, it is of course possible that this is a coincidence and they

were in fact carried out by different users. In order to gain additional confidence

that it was the same user, we have two options. In UTXO-based cryptocurrencies

(see Section 2.1.3), we could see if the input is the same UTXO that was created in

the Phase 2 transaction, and thus see if a user is spending the coin immediately. In

cryptocurrencies based instead on accounts, such as Ethereum, we have no choice

but to look just at the addresses. Here we thus define a U-turn as seeing if the

address that was used as the output in the Phase 2 transaction is used as the input in

the later Phase 1 transaction.

Once we identified such candidate pairs of transactions (tx1, tx2), we then ran

the augmented heuristic from Section 5.4 to identify the relevant output address in

the curOut blockchain, according to tx1. We then ran the same heuristic to identify

the relevant input address in the curOut blockchain, this time according to tx2.

In fact though, what we really identified in Phase 2 was not just an address but,

as described above, a newly created UTXO. If the input used in tx2 was this same

UTXO, then we found a U-turn according to the first heuristic. If instead it corre-

sponded just to the same address, then we found a U-turn according to the second

heuristic. The results of both of these heuristics, in addition to the basic identifi-

cation of U-turns according to the timing and amount, can be found in Table 5.3,

and plots showing their cumulative number over time can be found in Figures 5.4

and 5.5. In total, we identified 107,267 U-turns according to our basic heuristic,

10,566 U-turns according to our address-based heuristic, and 1,120 U-turns accord-

ing to our UTXO-based heuristic.

While the dominance of both Bitcoin and Ethereum should be expected given

their overall trading dominance, we also observe that both Dash and Zcash have

been used extensively as “mixer coins” in U-turns, and are in fact more popular for
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Currency # (basic) # (addr) # (utxo)

BTC 36666 565 314
BCH 2864 196 81
DASH 3234 2091 184
DOGE 546 75 75
ETH 53518 5248 -
ETC 1397 543 -
LTC 8270 1429 244
ZEC 772 419 222

Table 5.3: The number of U-turns identified for each cryptocurrency, according to our basic
heuristic concerning timing and value, and both the address-based and UTXO-
based heuristics concerning identical ownership. Since Ethereum and Ethereum
Classic are account-based, the UTXO heuristic cannot be applied to them.

Figure 5.4: The total number of U-turns over time, as identified by our basic heuristic.

this purpose than they are overall. Despite this indication that users may prefer to

use privacy coins as the mixing intermediary, Zcash has the highest percentage of

identified UTXO-based U-turn transactions. Thus, these users not only do not gain

extra anonymity by using it, but in fact are easily identifiable given that they did

not change the address used in 419 out of 772 (54.24%) cases, or — even worse —

immediately shifted back the exact same coin they received in 222 (28.75%) cases.

In the case of Dash, the results suggest something a bit different. Once more, the

usage of a privacy coin was not very successful since in 2091 out of the 3234 cases

the address that received the fresh coins was the same as the one that shifted it back.

It was the exact same coin in only 184 cases, however, which suggests that although

the user is the same, there is a local Dash transaction between the two ShapeShift

transactions. We defer a further discussion of this asymmetry to Section 5.7.4,
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Figure 5.5: The total number of U-turns over time, as identified by our address-based (in
red) and UTXO-based (in blue) heuristics.

where we also discuss more generally the use of anonymity features in both Zcash

and Dash.

Looking at Figure 5.5, we can see a steep rise in the number of U-turns that

used the same address in December 2017, which is not true of the ones that used the

same UTXO or in the overall number of U-turns in Figure 5.4. Looking into this

further, we observed that the number of U-turns was particularly elevated during

this period for four specific pairs of currencies: DASH-ETH, DASH-LTC, ETH-

DASH, and LTC-ETH. This thus affected primarily the address-based heuristic due

to the fact that (1) Ethereum is account-based so the UTXO-based heuristic does not

apply, and (2) Dash has a high percentage of U-turns using the same address, but

a much smaller percentage using the same UTXO. The amount of money shifted

in these U-turns varied significantly in terms of the units of the input currency, but

all carried between 115K and 138K in USD. Although the ShapeShift transactions

that were involved in these U-turns had hundreds of different addresses in the curIn

blockchain, they used only a small number of addresses in the curOut blockchain:

4 addresses in Ethereum, 13 in Dash, and 9 in Litecoin. As we discuss further in

Section 5.6.2, the re-use of addresses and the fact that the total amount of money

(in USD) carried by the transactions was roughly the same indicates that perhaps a

small group of people was responsible for creating this spike in the graph.
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5.5.3 Round-trip transactions

As depicted in Figure 5.2c, a round-trip transaction requires performing two

ShapeShift transactions: one out of the initial currency and one back into it. To iden-

tify round-trip transactions, we effectively combine the results of the pass-through

and U-turn transactions; i.e., we tagged something as a round-trip transaction if the

output of a pass-through transaction from X to Y was identified as being involved

in a U-turn transaction, which was itself linked to a later pass-through transaction

from Y to X (of roughly the same amount). As described at the beginning of the

section, this has the powerful effect of creating a link between the sender and re-

cipient within a single currency, despite the fact that money flowed into a different

currency in between.

In more detail, we looked for consecutive ShapeShift transactions where for

a given pair of cryptocurrencies X and Y: (1) the first transaction was of the form

X-Y; (2) the second transaction was of the form Y-X; (3) the second transaction

happened relatively soon after the first one; and (4) the value carried by the two

transaction was approximately the same. For the third property, we required that

the second transaction happened within 30 minutes of the first. For the fourth prop-

erty, we required that if the first transaction carried x units of curIn then the second

transaction carried within 0.5% of the value in the (on-chain) Phase 2 transaction,

according to the outCoin field provided by the API.

As with U-turns, we considered an additional restriction to capture the case

in which the user in the curIn blockchain stayed the same, meaning money clearly

did not change hands. Unlike with U-turns, however, this restriction is less to pro-

vide accuracy for the basic heuristic and more to isolate the behavior of people

engaged in day trading or money laundering (as opposed to those meaningfully

sending money to other users). For this pattern, we identify the input addresses

used in Phase 1 for the first transaction, which represent the user who initiated the

round-trip transaction in the curIn blockchain. We then identify the output addresses

used in Phase 2 for the second transaction, which represent the user who was the

final recipient of the funds. If the address was the same, then it is clear that money
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Currency # (regular) # (same addr)

BTC 35019 437
BCH 1780 84
DASH 3253 2353
DOGE 378 0
ETH 45611 4085
ETC 1122 626
LTC 6912 2733
ZEC 472 172

Table 5.4: The number of regular round-trip transactions identified for each cryptocurrency,
and the number that use the same initial and final address.

has not changed hands. Otherwise, the round-trip transaction acts as a heuristic for

linking together the input and output addresses.

The results of running this heuristic (with and without the extra restriction)

are in Table 5.4. In total, we identified 95,547 round-trip transactions according to

our regular heuristic, and identified 10,490 transactions where the input and output

addresses were the same. Across different currencies, however, there was a high

level of variance in the results. While this could be a result of the different levels

of accuracy in Phase 1 for different currencies, the more likely explanation is that

users indeed engage in different patterns of behavior with different currencies. For

Bitcoin, for example, there was a very small percentage (1.2%) of round-trip trans-

actions that used the same address. This suggests that either users are aware of the

general lack of anonymity in the basic Bitcoin protocol and use ShapeShift to make

anonymous payments, or that if they do use round-trip transactions as a form of

money laundering they are at least careful enough to change their addresses. More

simply, it may just be the case that generating new addresses is more of a default in

Bitcoin than it is in other currencies.

In other currencies, however, such as Dash, Ethereum Classic, Litecoin, and

Zcash, there were relatively high percentages of round-trip transactions that used

the same input and output address: 72%, 56%, 40%, and 36% respectively. In

Ethereum Classic, this may be explained by the account-based nature of the cur-

rency, which means that it is common for one entity to use only one address, al-

though the percentage for Ethereum is much lower (9%). In Dash and Zcash, as
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we have already seen in Section 5.5.2 and explore further in Section 5.7.4, it may

simply be the case that users assume they achieve anonymity just through the use

of a privacy coin, so do not take extra measures to hide their identity.

5.6 Clustering Analysis

5.6.1 Shared ownership heuristic

As described in Sections 5.3.1 and 5.3.2, we engaged in transactions with both

ShapeShift and Changelly, which provided us with some ground-truth evidence of

addresses that were owned by them. We also collected three sets of tagging data

(i.e., tags associated with addresses that describe their real-world owner): for Bit-

coin we used the data available from WalletExplorer,6 which covers a wide variety

of different Bitcoin-based services; for Zcash we used hand-collected data from

Kappos et al. [80], which covers only exchanges; and for Ethereum we used the

data available from Etherscan,7 which covers a variety of services and contracts.

In order to understand the behavior of these trading platforms and the inter-

action they had with other blockchain-based services such as exchanges, our first

instinct was to combine these tags with the now-standard “multi-input” clustering

heuristic for cryptocurrencies [96, 125], which states that in a transaction with

multiple input addresses, all inputs belong to the same entity. When we applied

this clustering heuristic to an earlier version of our dataset [159], however, the re-

sults were fairly uneven. For Dogecoin, for example, the three ShapeShift trans-

actions we performed revealed only three addresses, which each had done a very

small number of transactions. By clustering the addresses we sent coins to and re-

ceived from the three Changelly transactions we performed, we identified 24,893

addresses, which in total had received over 67 trillion DOGE. These results suggest

that the trading platforms operate a number of different clusters in each cryptocur-

rency, and perhaps even change their behavior depending on the currency, which in

turns makes it clear that we did not capture a comprehensive view of the activity of

either.
6https://www.walletexplorer.com/
7https://etherscan.io/

https://www.walletexplorer.com/
https://etherscan.io/
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More worrying, in one of our Changelly transactions, we received coins from

a Ethereum address that had been tagged as belonging to HitBTC, a prominent

exchange. This suggests that Changelly may occasionally operate using exchange

accounts, which would completely invalidate the results of the clustering heuristic,

as their individually operated addresses would end up in the same cluster as all of

the ones operated by HitBTC. We thus decided not to use this type of clustering,

and to instead focus on a new clustering heuristic geared at identifying common

social relationships.

5.6.2 Common relationship heuristic

As it was clear that the multi-input heuristic would not yield meaningful information

about shared ownership, we chose to switch our focus away from the interactions

ShapeShift had on the blockchain and look instead at the relationships between

individual ShapeShift users. In particular, we defined the following heuristic:

Heuristic 6. If two or more addresses send coins to the same address in the curOut

blockchain, or if two or more addresses receive coins from the same address in the

curIn blockchain, then these addresses have some common social relationship.

The definition of a common social relationship is (intentionally) vague, and

the implications of this heuristic are indeed less clear-cut than those of heuristics

around shared ownership. Nevertheless, we consider what it means for two dif-

ferent addresses, in potentially two different blockchains, to have sent coins to the

same address; we refer to these addresses as belonging in the input cluster of the

output address (and analogously refer to the output cluster for an address sending

to multiple other addresses). In the case in which the addresses are most closely

linked, it could represent the same user consolidating money held across different

currencies into a single one. It could also represent different users interacting with

a common service, such as an exchange. Finally, it could simply be two users who

do not know each other directly but happen to be sending money to the same indi-

vidual. What cannot be the case, however, is that the addresses are not related in

any way.
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To implement this heuristic, we parsed transactions into a graph where we de-

fined a node as an address and a directed edge (u,v) as existing when one address u

initiated a ShapeShift transaction sending coins to v, which we identified using the

results of our pass-through analysis from Section 5.4. (This means that the inputs

in our graph are restricted to those for which we ran Phase 1 to find the address, and

thus that our input clusters contain only the top 8 currencies. In the other direction,

however, we obtain the address directly from the API, which means output clusters

can contain all currencies.) Edges are further weighted by the number of transac-

tions sent from u to v. For each node, the cluster centered on that address was then

defined as all nodes adjacent to it (i.e., pointing towards it).

Performing this clustering generated a graph with 2,895,445 nodes (distinct

addresses) and 2,244,459 edges. Sorting the clusters by in-degree reveals the en-

tities that received the highest number of ShapeShift transactions (from the top 8

currencies, per our caveat above). The largest cluster had 12,868 addresses — many

of them belonging to Ethereum, Litecoin, and Dash — and was centered on a Bit-

coin address belonging to CoinPayments.net, a multi-coin payment processing gate-

way. Of the ten largest clusters, three others (one associated with Ripple and two

with Bitcoin addresses) are also connected with CoinPayments, which suggests that

ShapeShift is a popular platform amongst its users.

Sorting the individual clusters by out-degree reveals instead the users who ini-

tiated the highest number of ShapeShift transactions. Here the largest cluster (con-

sisting of 2314 addresses) was centered on a Litecoin address, and the second largest

cluster was centered on an Ethereum address that belonged to Binance (a popular

exchange). Of the ten largest clusters, two others were centered on Binance-tagged

addresses, and three were centered on other exchanges (Freewallet, Gemini, and

Bittrex). While it makes sense that exchanges typically dominate on-chain activity

in many cryptocurrencies, it is somewhat surprising to also observe that dominance

here, given that these exchanges already allow users to shift between many different

cryptocurrencies. Aside from the potential for better rates or the perception of in-

creased anonymity, it is thus unclear why a user wanting to shift from one currency
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to another would do so using ShapeShift as opposed to using the same service with

which they have already stored their coins.

Beyond these basic statistics, we apply this heuristic to several of the case

studies we investigate in the next section. We also revisit here the large spike in the

number of U-turns that we observed in Section 5.5.2. Our hypothesis then was that

this spike was caused by a small number of parties, due to the similar USD value

carried by the transactions and by the re-use of a small number of addresses across

Dash, Ethereum, and Litecoin. Here we briefly investigate this further by examining

the clusters centered on these addresses.

Of the 13 Dash addresses, all but one of them formed small input and out-

put clusters that were comprised of addresses solely from Litecoin and Ethereum.

Of the 9 Litecoin addresses, 6 had input clusters consisting solely of Dash and

Ethereum addresses, with two of them consisting solely of Dash addresses. Finally,

of the 4 Ethereum addresses, all of them had input clusters consisting solely of Dash

and Litecoin addresses. One of them, however, had a diverse set of addresses in its

output cluster, belonging to Bitcoin, Bitcoin Cash, and a number of Ethereum-based

tokens. These results thus still suggest a small number of parties, due to the tight

connection between the three currencies in the clusters, although of course further

investigation would be needed to get a more complete picture.

5.7 Patterns of ShapeShift Usage

In this section, we examine potential applications of the analysis developed in pre-

vious sections, in terms of identifying specific usages of ShapeShift. As before, our

focus is on anonymity, and the potential that such platforms may offer for money

laundering or other illicit purposes, as well as for trading. To this end, we begin by

looking at two case studies associated with explicitly criminal activity and examine

the interactions these criminals had with the ShapeShift platform. We then switch

in Section 5.7.3 to look at non-criminal activity, by attempting to identify trading

bots that use ShapeShift and the patterns they may create. Finally, in Section 5.7.4

we look at the role that privacy coins (Monero, Zcash, and Dash) play, in order to
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identify the extent to which the usage of these coins in ShapeShift is motivated by

a desire for anonymity.

5.7.1 Starscape Capital

In January 2018, an investment firm called Starscape Capital raised over 2,000 ETH

(worth 2.2M USD at the time) during their Initial Coin Offering, after promising

users a 50% return in exchange for investing in their cryptocurrency arbitrage fund.

Shortly afterwards, all of their social media accounts disappeared, and it was re-

ported that an amount of ETH worth 517,000 USD was sent from their wallet to

ShapeShift, where it was shifted into Monero [135].

We confirmed this for ourselves by observing that the address known to be

owned by Starscape Capital participated in 192 Ethereum transactions across a

three-day span (January 19-21), during which it received and sent 2,038 ETH; in

total it sent money in 133 transactions. We found that 109 of these transactions

sent money to ShapeShift, and of these 103 were shifts to Monero conducted on

January 21 (the remaining 6 were shifts to Ethereum). The total amount shifted into

Monero was 465.61 ETH (1388.39 XMR), and all of the money was shifted into

only three different Monero addresses, of which one received 70% of the resulting

XMR. Using the clusters defined in Section 5.6.2, we did not find evidence of any

other addresses (in any other currencies) interacting with either the ETH or XMR

addresses associated with Starscape Capital.

5.7.2 Ethereum-based scams

EtherScamDB8 is a website that, based on user reports that are manually investi-

gated by its operators, collects and lists Ethereum addresses that have been involved

in scams. As of January 30 2019, they had a total of 6374 scams listed, with 1973

associated addresses. We found that 194 of these addresses (9% of those listed) had

been involved in 853 transactions to ShapeShift, of which 688 had a status field of

complete. Across these successful transactions, 1797 ETH was shifted to other

currencies: 74% to Bitcoin, 19% to Monero, 3% to Bitcoin Cash, and 1% to Zcash.

8https://etherscamdb.info/
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The scams which successfully shifted the highest volumes belonged to so-

called trust-trading and MyEtherWallet scams. Trust-trading is a scam based on

the premise that users who send coins prove the legitimacy of their addresses, after

which the traders “trust” their address and send back higher amounts (whereas in

fact most users send money and simply receive nothing in return). This type of scam

shifted over 918 ETH, the majority of which was converted to Bitcoin (691 ETH, or

75%). A MyEtherWallet scam is a phishing/typosquatting scam where scammers

operate a service with a similar name to the popular online wallet MyEtherWallet,9

in order to trick users into giving them their account details. These scammers shifted

the majority of the stolen ETH to Bitcoin (207 ETH) and to Monero (151 ETH).

Given that the majority of the overall stolen coins was shifted to Bitcoin, we

next investigated whether or not these stolen coins could be tracked further using

our analysis. In particular, we looked to see if they performed a U-turn or a round-

trip transaction, as discussed in Section 5.5. We identified one address, associated

with a trust-trading scam, that participated in 34 distinct round-trip transactions, all

coming back to a different address from the original one. All these transactions

used Bitcoin as curOut and used the same address in Bitcoin to both receive and

send coins; i.e., we identified the U-turns in Bitcoin according to our address-based

heuristic. In total, more than 70 ETH were circulated across these round-trip trans-

actions.

5.7.3 Trading bots

ShapeShift, like any other cryptocurrency exchange, can be used by traders who

wish to take advantage of the volatility in cryptocurrency prices. The potential

advantages of doing this via ShapeShift, as compared with other platforms that fo-

cus more on the exchange between cryptocurrencies and fiat currencies, are that

(1) ShapeShift transactions can be easily automated via their API, and (2) a sin-

gle ShapeShift transaction acts to both purchase desired coins and dump unwanted

ones. Such trading usually requires large volumes of transactions and high preci-

sion on their the timing, due to the constant fluctuation in cryptocurrency prices.

9https://www.myetherwallet.com/
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We thus looked for activity that involved large numbers of similar transactions in a

small time period, on the theory that it would be associated primarily with trading

bots.

We started by searching for sets of consecutive ShapeShift transactions that

carried approximately the same value in curIn (with an error rate of 1%) and in-

volved the same currencies. When we did this, however, we found thousands of

such sets. We thus added the extra conditions that there must be at least 15 transac-

tions in the set that took place in a span of five minutes; i.e., that within a five-minute

block of ShapeShift transactions there were at least 15 involving the same curren-

cies and carrying the same approximate USD value. This resulted in 107 such sets.

After obtaining our 107 trading clusters, we removed transactions that we be-

lieved were false positives in that they happened to have a similar value but were

clearly the odd one out. For example, in a cluster of 20 transactions with 19 ETH-

BTC transactions and one LTC-ZEC transaction, we removed the latter. We were

thus left with clusters of either a particular pair (e.g., ETH-BTC) or two pairs where

the curOut or the curIn was the same (e.g., ETH-BTC and ZEC-BTC), which sug-

gests either the purchase of a rising coin or the dump of a declining one. We

sought to further validate these clusters by using our heuristic from Section 5.6.2

to see if the clusters shared common addresses. While we typically did not find

this in UTXO-based currencies (as most entities operate using many addresses), in

account-based currencies we found that in almost every case there was one particu-

lar address that was involved in the trading cluster.

We summarize our results in Figure 5.6, in terms of the most common pairs

of currencies and the total money exchanged by trading clusters using those cur-

rencies. It is clear that the most common interactions are performed between the

most popular currencies overall, with the exception of Monero (XMR) and SALT.

In particular, we found six clusters consisting of 17-20 transactions that exchanged

BTC for XMR, and 13 clusters that exchanged BTC for SALT, an Ethereum-based

token. The sizes of each trading cluster varied between 16 and 33 transactions and

in total comprise 258 transactions, each of which shifted exactly 0.1 BTC. In total
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Figure 5.6: Our 107 clusters of likely trading bots, categorized by the pair of currencies
they trade between and the total amount transacted by those clusters (in USD).

they originated from 514 different Bitcoin addresses, which may make it appear

as though different people carried out these transactions. After applying our pass-

through heuristic, however, we found that across all the transactions there were only

two distinct SALT addresses used to receive the output. It is thus instead likely that

this represents trading activity involving one or two entities.

5.7.4 Usage of anonymity tools

Given the potential usage of ShapeShift for money laundering or other criminal

activities, we sought to understand the extent to which its users seemed motivated

to hide the source of their funds. While using ShapeShift is already one attempt

at doing this, we focus here on the combination of using ShapeShift and so-called

“privacy coins” (Dash, Monero, and Zcash) that are designed to offer improved

anonymity guarantees.

In terms of the effect of the introduction of KYC into ShapeShift, the number

of transactions using Zcash as curIn averaged 164 per day the month before, and

averaged 116 per day the month after. We also saw a small decline with Zcash as

curOut: 69 per day before and 43 per day after. Monero and Dash, however, saw

much higher declines, and in fact saw the largest declines across all eight cryp-

tocurrencies. The daily average the month before was 136 using Monero as curIn,
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Figure 5.7: The three types of interactions we investigated between ShapeShift and the
shielded pool in Zcash.

whereas it was 47 after. Similarly, the daily average using it as curOut was 316

before and 62 after. For Dash, the daily average as curIn was 128 before and 81

after, and the daily average as curOut was 103 before and 42 after.

In terms of the blockchain data we had (according to the most popular cur-

rencies), our analysis in what follows is restricted to Dash and Zcash, although we

leave an exploration of Monero as interesting future work.

5.7.4.1 Zcash

The main anonymity feature in Zcash is known as the shielded pool. Briefly, trans-

parent Zcash transactions behave just like Bitcoin transactions in that they reveal in

the clear the sender and recipient (according to so-called t-addresses), as well as the

value being sent. This information is hidden to various degrees, however, when in-

teracting with the pool. In particular, when putting money into the pool the recipient

is specified using a so-called z-address, which hides the recipient but still reveals

the sender, and taking money out of the pool hides the sender (through the use of

zero-knowledge proofs [15]) but reveals the recipient. Finally, Zcash is designed to

provide privacy mainly in the case in which users transact within the shielded pool,

which hides the sender, recipient, and the value being sent.

We considered three possible interactions between ShapeShift and the shielded

pool, as depicted in Figure 5.7: (1) a user shifts coins directly from ShapeShift

into the shielded pool, (2) a user shifts to a t-address but then uses that t-address

to put money into the pool, and (3) a user sends money directly from the pool to

ShapeShift.

For the first type of interaction, we found 29,003 transactions that used ZEC

as curOut. Of these, 758 had a z-address as the output address, meaning coins

were sent directly to the shielded pool. The total value put into the pool in these
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transactions was 6,707.86 ZEC, which is 4.3% of all the ZEC received in pass-

through transactions. When attempting to use z-addresses in our own interactions

with ShapeShift, however, we consistently encountered errors or were told to con-

tact customer service. It is thus not clear if usage of this feature is supported at the

time of writing.

For the second type of interaction, there were 1309 where the next transaction

(i.e., the transaction in which this UTXO spent its contents) involved putting money

into the pool. The total value put into the pool in these transactions was 12,534 ZEC,

which is 8.2% of all the ZEC received in pass-through transactions.

For the third type of interaction, we found 111,041 pass-through transactions

that used ZEC as curIn. Of these, 3808 came directly from the pool, with a total

value of 22,490 ZEC (14% of all the ZEC sent in pass-through transactions).

Thus, while the usage of the anonymity features in Zcash was not necessarily a

large fraction of the overall usage of Zcash in ShapeShift, there is clear potential to

move large amounts of Zcash (representing over 10 million USD at the time it was

transacted) by combining ShapeShift with the shielded pool.

5.7.4.2 Dash

Our parameters for identifying a CoinJoin were thus that (1) the transaction must

have at least three inputs, (2) the outputs must consist solely of values from the list

of possible denominations (modulo the fees), and (3) and all output values must be

the same. In fact, given how Dash operates there is always one output with a non-

standard value, so it was further necessary to relax the second and third requirements

to allow there to be at most one address that does not carry the specified value.

We first looked to see how often the DASH sent to ShapeShift had originated

from a CoinJoin, which meant identifying if the inputs of a Phase 1 transaction were

outputs from a CoinJoin. Out of 100,410 candidate transactions, we found 2,068

that came from a CoinJoin, carrying a total of 11,929 DASH in value (6.5% of the

total value across transactions with Dash as curIn). Next, we looked at whether or

not users performed a CoinJoin after receiving coins from ShapeShift, which meant

identifying if the outputs of a Phase 2 transaction had been spent in a CoinJoin. Out
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of 50,545 candidate transactions, we found only 33 CoinJoin transactions, carrying

a total of 187 DASH in value (0.1% of the total value across transactions using Dash

as curOut).

If we revisit our results concerning the use of U-turns in Dash from Sec-

tion 5.5.2, we recall that there was a large asymmetry in terms of the results of

our two heuristics: only 5.6% of the U-turns used the same UTXO, but 64.6% of

U-turns used the same address. This suggests that some additional on-chain trans-

action took place between the two ShapeShift transactions, and indeed upon further

inspection we identified many cases where this transaction was a CoinJoin. There

thus appears to have been a genuine attempt to take advantage of the privacy that

Dash offers, but this was completely ineffective due to the use of the same address

that both sent and received the mixed coins.

5.8 Conclusions
In this study, we presented a characterization of the usage of the ShapeShift trading

platform over a thirteen-month period, focusing on the ability to link together the

ledgers of multiple different cryptocurrencies. To accomplish this task, we looked

at these trading platforms from several different perspectives, ranging from the cor-

relations between the transactions they produce in the cryptocurrency ledgers to the

relationships they reveal between seemingly distinct users. The techniques we de-

velop demonstrate that it is possible to capture complex transactional behaviors and

trace their activity even as it moves across ledgers, which has implications for any

criminals attempting to use these platforms to obscure their flow of money.



Chapter 6

Forsage: An Anatomy of a

Cryptocurrency Pyramid Scheme

6.1 Overview

Cryptocurrencies and smart contracts are new and powerful technologies that

promise a range of benefits, including faster monetary transactions, innovative fi-

nancial instruments, and global financial inclusion for the world’s unbanked. Con-

versely, though, these same technologies have fuelled new forms of fraud and

theft [144, 166] and new ways of perpetrating existing types of crime [77, 119].

Pyramid schemes, for example, are a prevalent type of scam in which top-

tier participants in a hierarchical network recruit and profit at the expense of an

expanding base of new participants. They have existed for more than a century, but

have recently emerged in a new form: as smart contracts on blockchains such as

Ethereum.

Smart contracts are in some ways an ideal medium for pyramid schemes and

other scams. Because they run in decentralized systems, they cannot easily be

dismantled by law enforcement agencies. They can instantaneously ingest pay-

ments from victims across the globe. They provide privacy protection for their

creators in the form of pseudonymous addresses. Finally, as so-called “trustless”

applications—with world-readable (byte)code—they present a veneer of trustwor-

thiness to unsuspecting users.
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The flip side of such transparency is that smart contracts offer researchers a

degree of visibility into the mechanics of online (and offline) scams that is without

historical precedent. Not only is the (byte)code specifying the scam’s mechanics

visible on chain, but so is every transaction performed by every participant.

In this chapter, we take advantage of this newfound visibility to conduct an

in-depth measurement study of the largest smart contract-based pyramid scheme to

date, called Forsage Smartway or Forsage for short.

Forsage came into existence in late January 2020. It was at one point the sec-

ond most active contract in Ethereum by daily transaction count, and remains in

the top twenty at the time of writing. As we show throughout this paper, it is a

classic pyramid scheme, defined by the SEC as “a type of fraud in which partici-

pants profit almost exclusively through recruiting other people to participate in the

program” [74]. The Forsage contract requires players to send currency (Ether) in

order to participate. Funds sent by newly recruited users immediately pass through

the contract to existing players, with those at the top of the (smart contract-defined)

pyramid obtaining the largest returns.

Understanding the success of Forsage requires study of not just the contract

itself, but also its community of hundreds of thousands of users, many of whom

have actively discussed and marketed the scam. Consequently, to paint a detailed

picture of how Forsage lures and defrauds users, our study combines measurement

and analysis of a range of complementary forms of data, including source code,

on-chain transaction data, and social media interactions.

Our results come from three basic, mutually illuminating forms of study: smart

contract deconstruction (Section 6.4), blockchain analytics (Section 6.5), and anal-

ysis of video and social media interactions (Section 6.6).

We believe that our study’s findings are not just relevant to Forsage, but provide

durable insights into the conception, mechanics, and evolution of smart-contract

scams and financial scams more generally. They also point to effective strategies

that government authorities and the cryptocurrency community can use to combat

pyramid schemes and other scams, as we discuss in Section 6.7.
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We emphasize that our results, which reveal a combination of classic and smart

contract-specific scam characteristics, offer insights not just into Forsage, but into

both blockchain and non-blockchain scams more generally.

6.2 Background

6.2.1 Smart contracts

Forsage is realized as a smart contract. Smart contracts are applications that ex-

ecute on blockchains, decentralized systems that indelibly and immutably record

transactions in an authoritative sequence and are best known as the platforms that

realize cryptocurrencies such as Bitcoin.

The most popular public (permissionless) blockchain for smart contracts today

is Ethereum [29], whose native currency is known as Ether (ETH). Ethereum smart

contracts are launched in the form of bytecode that runs in a Turing-complete envi-

ronment known as the Ethereum Virtual Machine (EVM). Smart contract creators

often also publish corresponding source code, typically written in the Solidity pro-

gramming language, but such publication is optional. Transactions sent to smart

contracts by users are processed by contract code and are publicly visible on chain.

Transactions may send money to a contract from user accounts or other con-

tracts and must specify payment of execution fees to miners in the form of gas,

a parallel currency converted into ETH upon transaction execution. This conver-

sion is calculated by multiplying the amount of work performed by a transaction

(its “gas consumed”) by the price of gas in ETH set by user when submitting the

transaction [155].

Correctness of contract execution is enforced by the consensus mechanism un-

derlying the Ethereum blockchain, so a miner’s execution of contract code in the

EVM must be agreed upon by all network participants to be included in a confirmed

block.

Other permissionless blockchains with smart contract functionality are grow-

ing in popularity, e.g., Tron [54], to which Forsage has also been ported. Ethereum,

however, remains the dominant smart contract platform.
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6.2.2 Scams

Scams, i.e., fraudulent schemes involving financial deception, have been docu-

mented for centuries. Many scams involving large populations of victims assume

the form of pyramid schemes. The U.S. Securities and Exchange Commission

(SEC) defines a pyramid scheme as “a type of fraud in which participants profit al-

most exclusively through recruiting other people to participate in the program” [74].

Pyramid schemes, which are illegal in most jurisdictions, come in a number of vari-

ants. One variant is a Ponzi scheme, which specifically involves investment in fi-

nancial instruments. Multi-level marketing (MLM) schemes, which involve the sale

of a product or service, are related to pyramid schemes. They are legal in the U.S.,

but outlawed in some jurisdictions (e.g., China) [100].

6.2.3 Blockchain scams

A multitude of scams have arisen within the blockchain ecosystem. Some scams

have solicited investments from victims in new blockchain technologies. Examples

include Onecoin, a Ponzi scheme that involved a fake (centralized) blockchain in

which victims invested $19+ billion [90], Bitconnect, a token that promised returns

of 1% per day and saw investment of $3.5 billion from victims, as well as other,

related $1+ billion schemes such as Plustoken and WoToken.pro [14, 114].

Other scams instead use blockchain technology to realize variants of scams,

such as pyramid schemes, that were seen well before the advent of blockchains.

Prominent examples are Million.Money1 and Doubleway.io2, which are both cur-

rently active, as well as the defunct scheme Bullrun.live.3 All three have similarities

with Forsage: they use similar promotional materials, have a similar structure for

the user dashboard, and use similar language and terminology (e.g., a referrer to the

program is called an “upline”). We explore Forsage user interactions with multiple

scam contracts in 6.5.2.

1https://million.money
2https://doubleway.io/
3http://bullrun.live

https://million.money
https://doubleway.io/
http://bullrun.live
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6.3 Forsage Overview
The creators and promoters of Forsage advertise it as a matrix MLM scheme, de-

spite the lack of a service or product. It operates primarily on Ethereum, where its

initial Matrix contract has been active since January 31st, 2020. Since then, Forsage

creators have also launched a Forsage contract on Tron (TRX) and an additional,

followup smart contracts called Forsage xGold on both Tron and Ethereum. At

the time of this writing, the Forsage authors have since released contracts (0x2C...,

0x98...) on the Binance Smart Chain (BSC).

The Forsage website: Users interact with Forsage using the forsage.io website,

which shows how much they have paid into and earned from the contract. The web-

site encourages the use of user-friendly cryptocurrency tools. It shows users how to

purchase cryptocurrency using Trust Wallet, a user-friendly tool to exchange fiat for

cryptocurrency, and how to use MetaMask, a browser extension that allows users to

easily transact with cryptocurrency. The combination of these tools makes Forsage

accessible to novice users who may not previously have used cryptocurrencies or

smart contracts.

Forsage use and structure: A new Forsage user must pay a minimum of 0.05 ETH,

which opens up the slot at the first level in the two matrix systems, called X3 and

X4. Each matrix consists of 12 slots. To unlock the ability to use the next slot (at

level i+ 1), a user must pay twice as much ETH as for their currently highest slot

(at level i). In both X3 and X4, the first slot costs 0.025 ETH, while the twelfth and

final slot costs 51.2 ETH. This means that the total cost to open all slots in either

matrix is 102.375 ETH.

Each Forsage user has a referral code, created at the time they register. The

referral code links a recruited user’s account to the account that recruited them,

called their upline. These referral codes thus organize Forsage users into pyramids,

with the oldest accounts at the top. Payments flow upwards within a pyramid as

additional users join it. The pyramids of users linked by chains of referral code

are referred to as Forsage teams. It is possible to join Forsage without entering a

referral code; users who do so are assigned the referral code of the contract owner

https://bscscan.org/#/address/0x2CAa4694cB7Daf7d49A198dC1103C06d4991ae52 
https://bscscan.org/#/address/0x98872a66D0749C720D8Dc1A80d496b24B04ff7C5
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(a)

(b)

Figure 6.1: Screenshots of the forsage.io website. (a) Homepage of forsage.io as of May
6th, 2021. The website is marketing the arrival of the new scheme that will be
used on the Binance Smart Chain. (b) Landing page of the most profitable user
showing the progress page of the X3 matrix and other macro statistics.
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(the creator).

6.4 contains an explanation of the logic for payment flow of user funds sent

through the Forsage contract. Briefly, users earn money in the X3 and X4 matrices

as follows.

X3: In X3, users earn income by recruiting others into the system. A user must

recruit three additional users to recoup their initial investment within each

slot. Any recruits beyond the first three per slot will generate income for the

recruiting user and those further up in their pyramid. Each subsequent slot

costs more to open, but its resulting payout if filled with recruits will be higher

because the expected payout for each three recruits is equal to the initial cost

to open the slot for the recruiter. After a user fills a slot (i.e. recruits 3 users

into that slot), Forsage blocks the filled slot, causing the user to forfeit future

earnings from it until it is unblocked. Unblocking means paying to open the

slot at the next level up in the system, at which point this lower-level slot

cannot become blocked again.

X4: In X4, users can earn both by recruiting other users and by being on an active

team whom are opening new slots to ensure minimal blocking. When a user

recruits the six additional users necessary to recoup their initial investment in

an X4 slot (twice as many as are required in X3), that slot becomes blocked

and the user will have received the same amount of money paid to open the

slot, with others in their team getting paid as well. X4 also has an element

of competition: If a newer user on a team is more active than the user whose

referral code they used to join Forsage, that user can switch spots on the team,

giving the more active, newer user the profits that would otherwise flow to the

older, referring account [111].

6.4 Forsage Contract Deconstruction
Forsage promotional materials imply that the system is trustworthy because its code

is open-source, e.g., the promotional materials claim that the contract “guarantees
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the purity of conditions.” We took advantage of the availability of the source code

to conduct an in-depth analysis of the smart contract’s logic and data structures.

Methodology and data collection: The code for the Matrix smart contract is pub-

lished on Etherscan.4 We first attempted manual source code review, but found the

logic too confusing to follow without visualization. We then built a simulator in

Python that deployed the contract to a local private test network of Go-Ethereum

(Geth) nodes,5 and used Web3.py6 to send sample transactions. We also wrote a

visualizer for the contract’s state machine using GraphViz [45]. The output of that

visualizer assisted in creating Figure 6.2, which depicts the data stored in the con-

tract. Although the open source code is pointed to as a source of legitimacy by

Forsage promotional materials, our analysis of the contract took weeks of focused

effort by a professional research engineer. Our source code for the visualizer and

simulator tools will be released as open source software in the near future.

When the Forsage team launched their Tron implementation of the Matrix

smart contract, they also released its source code. We found this Tron code to be

nearly identical to the Ethereum original, so we did not specifically analyze it. The

latest iteration of Forsage launched on both Ethereum and Tron (as of May 2021),

the xGold contract, has no publicly available source code.

The Ethereum and Tron blockchains include the data for all transactions per-

formed by Forsage users. We mined this publicly available data to perform further

analysis. To obtain Ethereum data we ran the Go-Ethereum (Geth)7 and Turbo-

Geth8 full-node and archive-node software packages, and downloaded the entire

blockchain up to January 14, 2021.

We then used the Ethereum-ETL9 package to retrieve this data from Geth and

store the 345 million transactions included in the Ethereum blockchain between

the launch of Forsage (January 31, 2020) and January 14, 2021. We wrote cus-

4etherscan.io/address/0x5acc84a3e955Bdd76467d3348077d003f00fFB97
5https://github.com/ethereum/go-ethereum
6https://github.com/ethereum/web3.py
7https://github.com/ethereum/go-ethereum
8https://github.com/ledgerwatch/turbo-geth
9https://github.com/blockchain-etl/ethereum-etl

https://etherscan.io/address/0x5acc84a3e955Bdd76467d3348077d003f00fFB97
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/web3.py
https://github.com/ethereum/go-ethereum
https://github.com/ledgerwatch/turbo-geth
https://github.com/blockchain-etl/ethereum-etl
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... 123 4

Figure 6.2: A visualization of the state the contract keeps for each user in the X3 matrix,
focusing on a user Charlie. The addr variables point to Ethereum addresses,
here given NATO-phonetic names. Matrix slots that have not yet been opened
are depicted with a numbered dot, instead of a box.

tom Python scripts to analyze this data and found 222,516,680 transactions that

involved function calls on smart contracts, of which 3,266,722 were to the Forsage

smart contract. To profile user transactions outside Forsage, we used the Chainal-

ysis Reactor tool.10 Chainalysis Reactor is a web-based investigation platform that

connects cryptocurrency transactions to real-world entities, using tags that are either

internal to Chainalysis or gathered from public websites and documents.

To collect Tron transaction data we scraped the TronScan API11 and parsed the

results directly into CSV form.

Forsage data structures: As discussed in Section 6.3, Forsage consists of two ma-

trix systems, X3 and X4, each consisting of 12 slots. These two matrices differ in

the number of users that act to fill each matrix level (three for X3, six for X4) and

the logic for how nodes propagate through them over time.

The data for each user is stored in a hashtable (Solidity mapping) on the

Ethereum blockchain, with the key being the user’s address and the value being

a Solidity struct with the data for that user’s state tree and arrays of pointers

to its children. Figure 6.2 visualizes this mapping for a user’s X3 tree, with some

minor metadata variables omitted. Each user also has an X4 tree, whose structure is

largely similar. As seen in this figure, each user has an upline, which is the user that

10https://www.chainalysis.com/chainalysis-reactor/
11https://tronscan.org/

https://www.chainalysis.com/chainalysis-reactor/
https://tronscan.org/


6.4. Forsage Contract Deconstruction 122

referred them to the contract. This is distinct from slotReferrer, a variable used

per slot as part of the payment logic. The slotReferrer variable is initialized to the

upline, but changes over time as users refer each other. The reinvestCount variable

keeps track of the number of times a slot has been filled. In our example, Charlie

has filled his first matrix slot once already (and then unblocked it by buying a slot at

level 2), meaning he has referred 3× reinvestCount+2 = 5 = partnersCount users.

External API: The contract exposes 15 functions to read its state, and two state-

changing functions, registrationExt and buyNewLevel. The first registers

new users and thus adds them to the contract state. The second changes contract

state for an existing user to allow them to continue to gain money from new referrals.

The placement of new users in the contract state depends on the X3 and X4

slots for the user that referred them (their upline). The logic of the contract scram-

bles positions in the upline’s matrices and in the matrices of the upline’s parent

when an upline’s slot becomes full, i.e. every time the upline refers a multiple of

three users to a given X3 slot (partnersCount mod 3 = 0), or a multiple of six users

to a given X4 slot. The logic of scrambling leaf nodes in the pyramid depends on

the state of the slot referrer variable for the affected matrix slot, as well as the

blocked variable for that slot, and in the X4 system an additional closedPart

variable for each slot. Scrambling the positions of the existing users in the system

helps to make payments through Forsage (falsely!) appear more random. It bene-

fits older users in the pyramid, as users are usually scrambled “up” the pyramid to

become children of older users rather than newer ones.

Transaction fees: The fact that Forsage has so much persistent on-chain storage

means that its users pay higher gas fees than the average for Ethereum contracts, due

to the heavy usage of the (expensive) SLOAD and SSTORE opcodes. These fees are

higher even when comparing Forsage transactions only to other contract function

calls in Ethereum (so in particular ignoring simple sends of ETH). In our collected

dataset of Ethereum network transactions, we found that the mean transaction fee

for all Ethereum transactions that interacted with a contract was 0.00632 ETH with

a standard deviation of 0.0618 ETH and a median of 0.00257 ETH. Forsage transac-
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Opcode
Avg num

per tx
(all)

Median
(all)

Avg num
per tx

(Forsage)

Median
(Forsage)

SSTORE
4.54
± 8.10

2
10.76
± 9.57

6

SLOAD
17.84
± 51.6

7
36.86
± 26.21

29

Table 6.1: Average number of instruction operations per transaction, with standard devia-
tion, for both all transactions and only those that interact with Forsage. Due to
the intensive computation required to process this data, this table covers only the
thousand blocks between block heights 10,600,000 and 10,601,000 (Roughly
13:00-18:00 UTC on August 5th, 2020) rather than our larger dataset including
all transactions from 2020. This smaller dataset still contains 188,920 transac-
tions that interact with smart contracts, 5667 of which interact with Forsage.

tions paid a higher average transaction fee of 0.0116 ETH with a standard deviation

of 0.0108 ETH and a median of 0.00883 ETH. Forsage users pay more than four

times as much on average as other smart contract users.

The most gas-expensive EVM operations/opcodes are those that create a new

contract (CREATE, CREATE2); store, change, and access data into persistent on-

chain state (SSTORE, SLOAD), and call contract functions or send money to other

users in the network (CALL) [155]. Every transaction that interacts with Forsage

through its two main functions, registrationExt and buyNewLevel, uses

two of these three most expensive categories, often multiple times: they make

use of persistent storage via SSTORE and SLOAD operations, and send money to

other users on the network using Solidity operations that compile to the CALL op-

code. Forsage uses an average number of CALL operations, but makes heavy use of

SSTORE and SLOAD, as shown in Table 6.1.

Figure 6.3 shows a superimposed histogram of Forsage transactions relative

to all Ethereum transactions. The higher gas consumption associated with Forsage

results in higher transaction fees overall, as demonstrated by the right-shifted peak

in the Forsage curve relative to that of all ETH transactions.
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Figure 6.3: Histogram of transaction costs on the Ethereum blockchain—from January
31, 2020 to January 14, 2021—that involve successful smart contract function
calls. Blue bars indicate the number of all transactions that paid fees within the
given bucket, while orange bars indicate the same data, but only for transac-
tions sent to the Forsage smart contract. The data excludes outlier transactions
with fees above 0.06 ETH, which is above the 99th percentile of all transactions
from this time period.

Figure 6.4: Flow chart for the logic of who gets paid when a new user registers, in the X3
system. The BuyNewLevel function follows similar logic, but conditioned
on the matrix slot being purchased, rather than the first slot.
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Payment logic: There are three ways for a user to get paid in Forsage: (1) by re-

ferring new users to the system; (2) when users they have referred in the past buy

an additional matrix slot at a level corresponding to one previously purchased by

the referrer; and (3) when spillover occurs, a condition in the X4 matrix resulting

from the slots of another user downstream in the pyramid being blocked. When-

ever money is sent to the smart contract by one user, the contract atomically (i.e., in

the same transaction) sends those funds to other users based on the logic described

below. This allows Forsage promotional materials to claim that the contract “never

stores users’ funds.”

When a user buys a new slot, the money they pay typically routes to the first

found upline that also has that same slot open. Users are thus incentivized to buy

new levels in order to refer users underneath them, which means a user can be gen-

erally successful by adding additional matrix slots just before referring additional

users, and in general by recruiting as many users as possible.

Figure 6.4 show the logic determining who gets paid when a new user registers

with the Forsage contract. The logic for purchases of new slots (buyNewLevel)

is largely similar but depends on the slot purchased rather than the first one (e.g., if

a user buys the third slot then the logic is conditioned on the status of their upline’s

third slot).

The flowcharts in these figures show that uplines must keep their slots from

becoming blocked, or payments will skip over them. To prevent a slot from becom-

ing blocked, a user must buy the slot at the next level. This will also unblock an

existing slot if it already has become blocked, and prevent the slot at level−1 from

ever becoming blocked again. Figure 6.5 shows the distribution of levels purchased

in aggregate for all users in the Forsage contract, as well as the summed profitabil-

ity for the group of users that purchased that many slot levels. In general users that

purchased more levels were also the most profitable users: The average user of the

contract purchased 2.13 levels, with a standard deviation of 2.89 and a median of 1

level purchased.

When a new user joins the system, their payment is split into two equal parts
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Figure 6.5: The distribution of how many users had unlocked a given number of levels
in the contract (on top, and at log scale), and the collective amount of money
gained or lost by the users who had unlocked this number of levels (on bottom,
and at linear scale). Users that bought the most levels were on average the most
profitable.

and the logic in the flowchart is applied to each half, with one half going through

the X3 flowchart and one half through the X4 flowchart, to determine which other

user(s) should get each half of the payment. If the direct upline of this new user is

not blocked, then the upline gets the payment. If the upline has a blocked slot, the

contract checks the upline’s upline for that matrix slot level to see if it is blocked.

This iterates through uplines until the contract finds one that is unblocked, which

it then pays. The contract owner (i.e., the user that created the contract) is always

unblocked, so the contract always finds a user to pay. This can sometimes result in

the same user being payed twice (once by each half), or uncles and aunts being paid

by their nephews and nieces in the tree if it has been previously scrambled. This

condition is called spillover.

Spillover means that it is possible to earn money by receiving payments that

should have gone to another user who had blocked slots. This passive earning is

possible only in the X4 system, and only if a spillover recipient’s upline is blocked

and cannot currently receive payment. A given user’s chance of spillover is un-

predictable, because it depends on the actions of other users. In our analysis of
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Figure 6.6: On a log scale, the total number of users (on the y-axis) acting as slot referrer
for a given number of other users (on the x-axis), for both the X3 and X4
matrices. For example, one user (the contract owner, 0x81...) is slot referrer for
9220 other users.

the transactions to Forsage from its conception until January 14th, 2021, we found

that 35,251 transactions (only 1.08%) contained spillover payments. Of those trans-

actions 63% were registrations, and the remaining 37% resulted from buying new

levels.

Ethereum transaction costs are incurred by each interaction with the Forsage

smart contract, and eat into users’ profits. Any claims about user profit must thus

take gas costs into account.

The privileged role of the owner: The Forsage contract is initialized so that the

owner account (i.e., the creator of the contract, 81ca...) has all matrix slots for both

X3 and X4 opened for free. Likewise, the owner’s slots can never become blocked.

This creates ample opportunities for the owner to profit from the contract, which we

confirm empirically in Section 6.5.

Beyond the ability to earn money by referring users, the owner also has addi-

tional opportunities to earn money passively. If a user sends the contract exactly

0.05 ether for registration without specifically calling the registration function, or

calling a function that does not exist, that function call is rerouted to the registration

function with the owner set as the user’s upline. Likewise, if the upline gets replaced

https://etherscan.io/address/0x81ca1e4de24136ebcf34ca518af87f18fd39d45e
https://etherscan.io/address/81ca1e4de24136ebcf34ca518af87f18fd39d45e 
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as the referrer, it is always replaced with a user further up in the pyramid. Thus, as

users refer others and have their slots blocked as a result, the upline for all users

eventually converges to the owner of the contract. Finally, the logic that prevents

the owner’s slots from becoming blocked also means that the owner’s children do

not change once set. This means that the owner maintains the oldest users in the

pyramid as children, which results in high spillover in the X4 matrix.

We found that the slotReferrer variable was set to the contract owner for 9220

slots in the Forsage contract. By comparison, the average Forsage user was set as

the referrer for 4.14 other accounts (with a standard deviation of 15.92) and the

median account was set as the referrer for one other account. Figure 6.6 shows the

full distribution of referrers for all accounts.

6.5 Contract Measurement Study
In this section, we present the results of our measurement study of Forsage con-

tract transactions, which encompasses all monetary transactions in the scheme. A

description of our data collection process is in Section 6.4. We first present statis-

tics capturing the degree of user interaction with the various Forsage contracts on

Ethereum and Tron (6.5.1). We then present an analysis of the account behaviour

and profits over the Forsage user population (6.5.2), in particular analyzing where

funds are obtained and how funds flow through the five most profitable accounts.

6.5.1 Scheme statistics

Table 6.2 shows a summary of statistics for the four official Forsage contracts, and

one additional contract, TRX Clone, which is a cloned version of the Ethereum Ma-

trix contract operating on Tron. This clone launched before the official TRX Matrix

contract, and has a different domain12 but with graphics and style akin to the official

website. The official Forsage website added a warning after the clone’s appearance,

asking users to “beware of fake resources” and stating that the “forsage.io” web-

site is the only official domain. In total, the table shows that the official Forsage

contracts amassed over 267M USD within the first year of operation. Among all of

12forsagetron.io
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Contract
Total
TXs

Unique
sending
ad-
dresses

Total
coins

Total
USD

Launch date Address

ETH Ma-
trix

3M 1M 721k 225M Jan 31, 2020 0x5a...

TRX
Clone

217k 78k 537M 14M
July 25,
2020

TJRv...

TRX Ma-
trix

1M 342k 1B 31M Sept 6, 2020 TREb...

TRX
xGold

307k 105k 90M 2M Nov 7, 2020 TA6p...

ETH
xGold

37k 17k 8k 9M Jan 4, 2021 0x48...

Table 6.2: Summary statistics of the four official Forsage smart contracts and one clone.
The USD value was calculated by taking a sum of the payments per day and
multiplying it by the average of the 24-hour high and low on the respective day.
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Figure 6.7: Number of transactions sent from users to the four Forsage contracts across
Ethereum and Tron and to an unofficial Tron-based clone.

these contracts, the ETH Matrix contract brought in the most money and raised the

highest amount on a single day: 3.7 million USD on August 1, 2020. The more re-

cent xGold contracts (deployed on both Ethereum and Tron) were sent a combined

11.53 million USD in ETH and TRX in less than two months.

Figure 6.7 shows the number of transactions received by each contract over

time. For each contract introduced after the original ETH Matrix one, we observe

a large number of initial transactions followed by a substantial drop. We also see a

https://etherscan.io/address/0x5acc84a3e955Bdd76467d3348077d003f00fFB97
https://tronscan.org/#/address/TJRv6qukWEz4DKY6gkd3fhX4uahREpTQu6
https://tronscan.org/#/address/TREbha3Jj6TrpT7e6Z5ukh3NRhyxHsmMug
https://tronscan.org/#/address/TA6p1BnBf2HJgc77Zk8BHmHoiJzquLCKWb
https://etherscan.io/address/0x488e3a4bbbb2386ba619eed88319e807c3ddb6c2
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Figure 6.8: The daily transaction count associated with the six most transacted contracts
between April 1 and September 30, 2020. Here Forsage refers to the ETH
Matrix contract.

decline in the number of transactions sent to the original ETH Matrix contract after

the other contracts become available. Given the relatively longevity and popular-

ity of the ETH Matrix contract, we focus primarily on it for the remainder of this

section.

To illustrate the popularity of Forsage, Figure 6.8 shows the number of daily

transactions associated with the six most popular contracts across a six-month pe-

riod in 2020. Of these contracts, Tether and USDC are stablecoins; Uniswap is a

decentralized exchange; and Easy Club, MMBSC Global, and Forsage are believed

to be scams/pyramid schemes. We can see that Tether is consistently the most pop-

ular contract and that for most of its peak from June to August, Forsage (as rep-

resented by ETH Matrix) had the second highest transaction rate among Ethereum

smart contracts. This data is supported by Google Trends results for 2020: From

April to August of 2020, Forsage had the highest search traffic globally of any of

the smart contracts we studied, including both Tether and Uniswap, the two most

heavily used smart contracts on the network as of the time of writing.

6.5.2 Account behavior and profitability

To understand how Forsage users obtained the funds needed to interact with the

contract, we looked at the transactions that sent ETH to their accounts, and at when
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their accounts first became active. Figure 6.9 shows the ETH received by Forsage

users over time and the cumulative count of active Forsage-related accounts (i.e., the

first time an account was used that later interacted with the Forsage contract), with

a vertical line indicating when Forsage was deployed. It is clear that these accounts

became active and began to receive substantially more ether after the deployment of

Forsage; in fact, 98.89% of Forsage users had accounts that did not exist (or at least

did not transact) before Forsage. We found a similar increase when looking at the

number of transactions conducted by these users as well: prior to the deployment

of Forsage, 11k accounts were involved in 278k transactions, but after Forsage’s

release this increased to 1.04M users engaging in 16M transactions. While the

curve in Figure 6.9 looks quite steep given the timescale, it in fact reflects a steady

growth in the first appearance of accounts between April and August 2020, which

aligns with the peak of Forsage we saw in Figure 6.8. Each of these months saw

thousands of new accounts appearing per day, on average: 1659 in April, 3653 in

May, 8272 in June, 10,798 in July, and 4987 in August. In contrast there were at

most 20 new accounts appearing per day for each month in 2019 (except December,

when there were 68).

To identify which types of services were the source of this money, we used tags

from Etherscan. Of the ETH sent to Forsage users, over 56% (1.5M) came from

untagged sources, and only 15% came from known exchanges, with 5% of this

coming from the decentralized exchange Uniswap. As mentioned in Section 6.3,

Forsage promotional material recommends that users obtain ETH from TrustWallet.

This is a non-custodial service, which means accounts are associated with individual

users rather than with the exchange. Thus, if most users followed this advice, we

would expect to see that most of the ETH came from untagged sources.

Figures 6.10 and 6.11 show a histogram of all of the accounts that interacted

with the ETH Matrix contract organized by the amount of money either gained or

lost by each account (including the amount spent on transaction fees) as of January

14, 2021. In total, of the 1.04 million Ethereum addresses that took part in the ETH

Matrix scheme, only 11.8% (123,979) earned a profit. These profitable accounts
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Figure 6.9: Total ether received by Forsage users over time and total number of Forsage
users according to when their accounts were first used, with a dashed line indi-
cating the Forsage creation date.
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Figure 6.10: Profit/loss histogram of Ethereum accounts that interacted with the Forsage
smart contract, on a log scale. This graph shows the number of accounts that
made a profit or loss for each range of ETH. The majority of accounts incurred
a small net loss, less than 1 ETH.

made 265,618.52 ETH collectively, and the loss-making accounts (919,194 in total)

lost 305,785.44 ETH collectively (0.33 ETH on average). We revisit these profit-

making accounts below. Users incur additional losses from the high gas fees paid

for transacting with the contract, as explained in Section 6.4.

Profit-making accounts: The five addresses with the highest profits in Forsage

can be found in Table 6.3. Perhaps unsurprisingly given our discussion in Sec-
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Figure 6.11: Profit/loss histogram of Ethereum accounts that interacted with the Forsage
smart contract, centered around 0 and on a linear scale. The vast majority of
user accounts that interacted with Forsage lost between 0 and 0.25 ETH, with
the peak occurring between 0.038 and 0.063 ETH.

Address Profit (in ETH) Notes/First Seen

0x81... 5409.6 Owner of the contract
0x44... 3445.0 March 22, 2020
0xde... 1954.9 March 22, 2020
0x4a... 1943.2 January 31, 2020
0x59... 1573.0 June 4, 2020

Table 6.3: The five most profitable accounts that interacted with Forsage.

tion 6.4, the most profitable Forsage user is the owner of the contract, who earned

5409.6 ETH, or 2.04% of the total profits. Collectively, the five most profitable

users made 14,325.7 ETH, or 5.4% of profits, despite representing only 0.0004% of

users. The top 1000 users made 50% of the total profits.

Examination of the five most profitable addresses shows that the most prof-

itable address is another Ethereum contract created by the owner of the ETH Matrix

contract. Of the money received by this contract, 99% came from ETH Matrix. The

fourth highest earner sent 9% of received ETH directly back to Forsage. In fact, if

we follow all the addresses to which this user sent money, we see over 1321 ETH

sent back to Forsage eventually. Similarly, the fifth highest earner sent 204 ETH

directly back to Forsage.

Some of the top addresses interact directly with other known scams, such as

Beurax.com and TorqueBot.net, meaning they sent or received coins directly from

addresses associated with these scams. The top five profit-making accounts received

https://etherscan.io/address/0x81ca1e4de24136ebcf34ca518af87f18fd39d45e
https://etherscan.io/address/0x44fc2e52243cf20ecc91f61ffa33e59fc7e1c148
https://etherscan.io/address/0xdedba197cb186e6d129110e71138ef6c6ca153d8
https://etherscan.io/address/0x4aaa7083535965d1cdd44d1407dcb11eec3f576d
https://etherscan.io/address/0x59b312f6cfe5b1864654d1942c8c979ad830777e
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6.987 ETH from these scams.

Interestingly, the first transaction sent to the address that deployed Forsage was

from 0xb1..., which is the Ethereum address that deployed Million.money. This

suggests interaction between smart contract-based scam operators.

Finally, we consider the extent to which users who profited by interacting with

the Forsage ETH Matrix contract also interacted with other Forsage contracts. The

ETH xGold contract has 17,560 users, of which 17,129 (97.5%) also interacted with

ETH Matrix. Furthermore, the highest earner in xGold was the third highest earner

in Matrix, the fourth highest xGold earner was the seventh highest earner in Matrix,

and the eighth highest earner in xGold was the second highest earner in Matrix.

These three earners (all of which are within the ten wealthiest Matrix users) hold

21.85% of net profits in xGold. This suggests that at least some prominent users of

Matrix did indeed migrate over to xGold.

6.6 Study of Forsage Community
Methodology: We studied the Forsage community by examining the presence of

Forsage on social media. The Forsage website promotes official social media pres-

ences on Facebook, Instagram, Telegram, Twitter, and YouTube. All of these ser-

vices have official APIs to collect data, but some of the research we conducted

required manual interaction with the various social websites via a web browser, or

more sophisticated data collection techniques like web scraping.

We manually watched YouTube videos to understand the claims that Forsage

promotional videos make, as discussed in Section 6.6.1, and made requests to the

public YouTube API for view count and other popularity-related data.13 To get a

sense of Forsage’s Facebook and Instagram presence, we manually browsed various

Facebook groups and official Instagram accounts and leveraged the Facebook and

Instagram Graph APIs.14 Facebook group data is not available on the Graph API

so we wrote a custom Python script leveraging the Selenium WebDriver browser

automation tool to collect more in-depth data about Forsage Facebook groups and

13https://developers.google.com/youtube/v3/docs/search/list
14https://developers.facebook.com/docs/graph-api/

https://etherscan.io/address/0xb19dA4fd9f9A73A5A564C66D229B1E7219e8bdbe
https://developers.google.com/youtube/v3/docs/search/list
https://developers.facebook.com/docs/graph-api/
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their users.15 This yielded a dataset of just over 5000 of the most recent members

from the largest Facebook group dedicated to Forsage.16 Using the Twitter API for

academic researchers,17 we were able to scrape all tweets with the word “Forsage”

from January 1, 2020 until February 13, 2021. We used the official Telegram API
18 to collect information about telegram groups related to Forsage.

Community size Forsage has a substantial presence on the social network sites that

they target. This includes:

• Facebook: 131 active Facebook groups with titles or descriptions including

“Forsage,” containing 403,029 distinct Facebook members.

• Instagram: 24 Instagram accounts with Forsage in the username, disseminat-

ing information about Forsage to 24,747 followers of these accounts, with an

additional 78,220 posts on the Instagram #forsage hashtag.

• Telegram: 285,788 people spread across 49 different channels on Telegram

dedicated to Forsage.

• Twitter: Our collected Twitter dataset included 85,085 tweets from 21,746

unique accounts, including 513 accounts on Twitter that feature Forsage in

the account name.

• YouTube: 57,551 video results from 325 different YouTube channels.

The Forsage website also features a “community” subdomain19 that hosts a

tips and tricks section, blog-post style news, a frequently asked questions section,

“academy courses” that include video lectures on how to be an effective multi-

level-marketer, and a Stack-Overflow-like site where users can ask questions and

“Forsage Community Authors” answer.

A substantial amount of the Forsage online social media ecosystem may be

driven by bots. We ran the University of Indiana’s Observatory on Social Media
15https://www.selenium.dev/
16https://www.facebook.com/groups/forsageinformationgroup
17https://developer.twitter.com/en/docs/twitter-api/tweets/search/introduction
18https://core.telegram.org/
19https://community.forsage.io/

https://www.selenium.dev/
https://www.facebook.com/groups/forsageinformationgroup
https://developer.twitter.com/en/docs/twitter-api/tweets/search/introduction
https://core.telegram.org/
https://community.forsage.io/
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(OSoMe) Botometer tool [134] on our collected dataset of tweets and found that the

tool identified roughly 47% of the Forsage-related tweets we collected as coming

from likely bot accounts. For comparison, in March of 2017, Varol et al. [149] used

an earlier version of the Botometer tool to perform a measurement study across all

of Twitter and found that “between 9 and 15% of active Twitter accounts are bots.”

Type Claim Appears
Cumulative
Views

Wealth Forsage users make money forever. 3/10 425,356
Forsage users make unlimited income. 3/10 449,429
Forsage users make passive income. 3/10 247,344
Forsage users can earn hundreds of ETH in the
first few weeks or months.

4/10 558,617

Risk Forsage is risk-free for users. 3/10 393,927
No one can stop Forsage. 4/10 558,617
Forsage is safe because the contract does not
store funds.

4/10 530,165

Forsage is scam-proof. 3/10 393,927

Ethereum
The video explains what Ethereum is for new
users.

5/10 637,881

Education
The video explains what a smart contract is for
new users.

5/10 637,881

How to
Successful Forsage users open at least 3 slots per
program to start (0.2 ETH).

6/10 745,960

use
Users should buy more slots (send Forsage more
money) as soon as they earn.

5/10 654,727

Forsage
The more slots you open (money you send For-
sage), the more you will earn.

4/10 511,858

If you do not keep opening slots (sending money
to Forsage), you will not earn.

5/10 444,539

Table 6.4: We coded repeated claims that appear across the top 10 most viewed, English
language videos on YouTube, which mention ”Forsage” in their title to measure
user expectations when joining Forsage.

6.6.1 Analysis of Forsage YouTube Promotion

Forsage promotional materials offer a window into users’ expectations for the con-

tract. They also provides insight into how mention of the technical properties

of blockchain technology is harnessed to manipulate novice users. We find that

the information gap between those who understand blockchain technology and the
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Country Facebook Twitter YouTube

Nigeria 84 4878 3
Philippines 272 668 14
India 97 488 88
United States 45 1019 26
Indonesia 17 203 8
TOTAL 771 10200 216

Table 6.5: Top five countries with the highest absolute level of Forsage user engagement.
User engagement here is measured as a country’s total number of Facebook
observed users in the most popular Forsage Facebook group, plus its analo-
gous number of Twitter observed users that tweeted about Forsage in 2020, and
YouTube data for the number of YouTube channels with geo-tagged locations
that produced videos with Forsage in the title of the video.

broader community provides opportunities for scammers.

YouTube is a primary promotional channel for Forsage. Each participant join-

ing Forsage is referred to an official YouTube video explaining the program [111].

We searched YouTube for English language videos with “Forsage” in the title and

tracked the claims that repeat across videos to measure user expectations for For-

sage. The search for most viewed videos about Forsage also returned promotional

videos in Tagalog, Russian, Hindi, Tamil, Bangala, Telugu, Indonesian, and Span-

ish. Quasi-official (they share the same branding) Telegram chat groups for Forsage

news exist in English, Spanish, French, Italian, Russian, Arabic, Portuguese, Hindi,

Tamil, German, Azerbaijani, and Turkish.

Recommendation algorithms, like the one used by YouTube for search re-

sults, work in terms of popularity measured in views. The most viewed videos

on YouTube are the most likely to be seen by users. We selected the top ten videos

by views to qualitatively measure what users who search for informational videos

about Forsage would see and hear about the program and gain a sense of participant

expectations. We did so by coding the claims asserted about Forsage in these videos.

We focused on just the top ten videos because coding claims is a labor-intensive,

manual process. A researcher watched each video and noted if each video con-

tained any instance of certain claims (see Table 6.4 and Table 6.6). Each video was

watched and coded twice to ensure accuracy.

The top ten YouTube videos we coded had between 267,008 views (1st) and



6.6. Study of Forsage Community 138

Rank Title Views

1 Forsage Overview: Earn Ethereum Daily! 267008
2 Forsage Presentation - How does Forsage work 120425

3
Forsage Smart Contract - $735 Made Without Referring
Anyone 113677

4
FORSAGE: HOW TO EARN WITHOUT RECRUITING
ANYONE IN FORSAGE 117931

5
Forsage Smart Contract Review - Is It A SCAM Or Legit
Ethereum MLM? 106261

6 FORSAGE.io - BIG SPECIAL EVENT 91973

7
Forsage Smart Contract $1,778 Made Without Referring
a Single Person 91188

8 Forsage Review - Is Forsage a Scam or Legit? 79264

9
Smartway Forsage REVIEW - First Ever SCAM PROOF
Program 64923

10 how to make money on forsage without referring anyone 61996

Table 6.6: Top 10 Forsage videos from the official channel ordered by views.

61,996 views (10th). Beyond the videos we coded, the 11th most viewed video had

just over 50,000 views20 and the 20th had 33,000 views.21

The top 10 “Forsage” YouTube videos by views as of December 14, 2020 (see

Table 6.6) fit into three categories: official promotion, user-led recruitment, and user

reviews. Two of the videos were official promotion posted to Forsage’s YouTube

channel [111, 112]. Table 6.4 shows the repeated claims across the top ten videos.

In recruiting new users, Forsage promoters pointed to users who earned tens of

thousands of dollars per day and hundreds of thousands of dollars per month, show-

ing images of successful users’ Forsage dashboards displaying six-figure returns.

Forsage official promotion videos highlight the immutable nature of the smart con-

tract and the transparency of Ethereum as proof that Forsage cannot be a scam. They

also make claims about the life-changing wealth and unstoppable, passive income

that users could unlock from the Forsage contract.

Forsage promotional videos also provide basic explanations of blockchains,

Ethereum, smart contracts, and how to use a cryptocurrency wallet to pay the con-

tract, implying that they expect users to be cryptocurrency novices. Only one of the

top ten videos identifies Forsage as a scam and warns users against using it.

20https://youtu.be/aGi5G5mTCUM
21https://youtu.be/9vlOYRSLaHI

https://youtu.be/aGi5G5mTCUM
https://youtu.be/9vlOYRSLaHI
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Figure 6.12: Forsage social media interaction heat map by country. Country labels indicate
the ISO-alpha-3 name of the country and the number of Forsage users per
100k people in that country. The data reflects the public location of members
in a popular Forsage Facebook group and Twitter users that tweeted about
Forsage. Countries depicted in gray had no Forsage interaction. The intensity
of color from white to red is scaled linearly from the 0th percentile of data to
the 90th percentile, and everything above 90% of the data is colored the same
shade of dark red. This slightly understates the relative depth of penetration
in outlier countries like Nigeria.

Many of the incorrect claims made in the Forsage promotional YouTube videos

also appear on the Forsage website and in the questions section of the official For-

sage Community website.

6.6.2 Forsage user geography

Since transactions on the Ethereum network do not carry any inherent geographic

metadata, we turned to social media analysis in order to gain a sense of the ge-

ographic placement of people interested in Forsage. In the data we collected on

members of Forsage-related Facebook groups, we found 771 users that publicly

listed a country location on their Facebook profile. We also found 10,200 unique

Twitter accounts that publicly posted their geographic location. YouTube does not

expose information about geographic location of the consumers of YouTube videos,

but YouTube channels that produce videos can choose to include country location in

their channel profile. We summarize this data for the five countries with the highest

number of active users in Table 6.5. Despite having a substantial population and

being the nationality of the founders of Forsage, Russia was not a large source of
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Twitter or Facebook content, although the country did produce a large number of

YouTube videos and content about Forsage.

The high number of Forsage users in the Philippines may explain why the

Philippines SEC took action to raise awareness about the malicious intent behind

Forsage [52, 137], unlike other countries. Likewise, Nigeria has high penetration

rates for both cryptocurrency and Forsage, and has recently banned cryptocurrency

payments from its banking sector [3]. While each of these five countries had high

Forsage activity in absolute terms, they also have large populations. We thus nor-

malized our Facebook and Twitter data relative to the specific populations on each

service for each country (i.e., the number of people per country divided by a public

estimate of the number of Facebook and Twitter users in that country) to get a sense

of the number of Facebook and Twitter users, per 100,000 users, that interacted on

each platform with the Forsage topic. Statistics for the number of Facebook and

Twitter users per country came from Miniwatts Marketing Group, WeAreSocial,

and Hootsuite [59, 69]. We did not include the YouTube data at this stage as it was

too small to be useful. We gave equal weight to the numbers for Facebook and

Twitter to produce the heat map in Figure 6.12.

Our normalized data showed that Forsage is most popular in Nigeria and the

African continent, the Philippines, and Venezuela. Greenland, the Seychelles, and

some Caribbean islands may appear to have heavy Forsage penetration, but may

be outliers due to small population sizes. Google Trends traffic and geographic

data agree with our conclusions: Google Trends shows the greatest amount of

population-adjusted search traffic in Nigeria and surrounding West African coun-

tries, and shows a peak in user search interest in July 2020, which is when we

observed a similar peak in transactions involved Forsage in Figure 6.7.

Familiarity with cryptocurrency does not appear to have any positive or nega-

tive correlation with interest in Forsage: The 2021 Statista Global Consumer Sur-

vey [27] lists the top countries globally with the reported highest number of cryp-

tocurrency users. Vietnam (#2) and China (#3) both had relatively high levels of

cryptocurrency use, but low levels of interest in Forsage. Similarly, familiarity with



6.7. Proposed Solutions 141

cryptocurrency does not appear to prevent people from falling for the Forsage scam,

as in the case of Nigeria and the Philippines (#1 and #3 globally for cryptocurrency

usage). Nigeria may be a special case, as Statista found that almost a third of Nige-

rians said they used cryptocurrency, far beyond most countries. It is also an outlier

in the data for interest in Forsage.

6.7 Proposed Solutions

6.7.1 Targeted education

From our analysis of Forsage user locations in Section 6.6.2, the majority of Forsage

victims are located in only a few countries. This concentration lends itself well

to a targeted education campaign and warnings from local financial leaders about

the Forsage scam. For example, a simple user dashboard showing the number of

Forsage users who lose money from the contract—more than 88% as of January

15th, 2020—could serve as an effective tool to combat disinformation from Forsage

promoters about the wealth users can amass. Such statistics may be more effective

than general warnings such as that issued by the Philippines SEC (see below).

6.7.2 Law enforcement and regulation

Past cryptocurrency pyramid schemes, including Plustoken, Wetoken, Onecoin, and

Bitconnect, have collapsed as a result of government sanctioning, which included

the arrest or warrants for the arrest of the founders and leadership [14, 60, 90, 114].

Similar attempts have been made around the world in regards to Forsage. On June

30, 2020, The Philippines Securities and Exchange Commission (PSEC) issued nu-

merous warnings declaring that Forsage was not a registered entity within their

jurisdiction and was operating without a license. On September 30, 2020 the PSEC

released a public announcement, mentioning that Forsage was publicly selling se-

curities as investment contracts without a license [52, 53, 136, 137]. The PSEC

served a cease-and-desist order. Forsage refused to comply, responding that they

“are outside the Commission’s jurisdiction.” On March 22nd 2021, the Commis-

sioner of Securities and Insurance of the U.S. state of Montana ordered Forsage to

cease and desist from operating a pyramid scheme in Montana [35, 36].
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To date, the authors of this paper are unaware of any public arrests made in

relation to the Forsage contract. The contract authors continue to profit and their

Ethereum addresses actively submit transactions to the network.

6.7.3 Voluntary blocklisting

Previous research has shown blocklisting can effectively combat scams and illicit

activity. Moser et al. found that transaction blocklisting of illicit cryptocurrency

funds is an effective additional layer above existing anti-money laundering (AML)

and know-your-customer (KYC) requirements for cryptocurrencies [105]. Previous

research in illicit online pharmaceutical sales found that the payment processing ser-

vices are the most fragile part of the scam [93]. These services play a similar role in

online pharmaceutical sales to fiat-accepting cryptocurrency exchanges in Forsage,

suggesting that access to exchanges, which could be revoked with blocklisting, may

be the the most fragile part of the scam. Crypto Defenders Alliance (CDA)22 and

CryptoSafe Alliance23 are two examples of groups that operate a blocklist.

On the other hand, blocklists can be biased and enable forms of censorship,

and addresses that are blocked in one region may not be considered suspicious or

criminal in other regions. To understand how professionals navigate these tensions,

we spoke to an anti-money laundering cryptocurrency investigator at a high profile

exchange. This expert expressed a belief that it is the responsibility of law enforce-

ment and regulators to comment on whether or not an address should be blocked,

and that it would be unfair and unjust to hold a user’s funds without an explicit

request from law enforcement or a court of competent jurisdiction. Nevertheless,

some exchanges have joined the alliances mentioned above, due to the time and

resources required to maintain a dedicated list of blocked addresses themselves.

6.8 Future work
There are a number of areas this work can be extended to. Due to limited time

and resources we were unable to further delve into the xGold contract, thus we

22https://cryptodefendersalliance.com/
23https://www.cryptosafe.org/

https://cryptodefendersalliance.com/
https://www.cryptosafe.org/
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leave the exploration of this contract for future research. Since the public release

of this research, the Forsage group has released two products onto Binance USD

blockchain, the matrix product and a brand new platform titled Forsage xXx. Future

research can look into analysing these two newer products. Our research focused

on analysing a single blockchain based pyramid scheme, future work can look into

analysing other pyramid schemes and related scams in Ethereum overall, in a way

to quantify the potential pyramid schemes on the network.

6.9 Conclusions

We presented an in-depth measurement study of Forsage, a smart-contract pyramid

scheme. Forsage is currently active and was at one time the second most actively

used contract in Ethereum.

We found that community claims regarding the open and verifiable nature

of Forsage are belied by the contract’s considerable complexity. Our study con-

sequently required a number of different data gathering approaches. It also re-

quired the creation of new tools—of potential independent interest and to be open-

sourced—to analyze the state of the Forsage contract. Thanks to these tools, our

study provides detailed insights into the mechanism design, transaction costs, and

other features of Forsage.

Among our key findings were that the vast majority of Forsage accounts—

over 88%—incurred losses, for a combined total loss of 305,785 ETH. The contract

owner, in contrast, earned over 5000 ETH (well over 1M USD), while a small num-

ber of other accounts at the top of the pyramid earned similarly large sums.

Our analysis of Forsage promotional materials reveals that scammers in the

Forsage community have taken advantage of misconceptions and misinformation

about blockchain technology, using properties like open-source code and transac-

tion transparency as a source of legitimacy with users who lack the skills neces-

sary to understand the contract’s behavior. Our analysis of Forsage on social me-

dia shows geographically distinct communities of scammers and victims, with the

scammers based primarily in Russia and victims apparently located mainly in Nige-
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ria, southern Africa, the Philippines, Venezuela, Indonesia, and India.

Public warnings about Forsage by entities such as the Philippines SEC have

had little apparent effect. We show that Forsage creators have launched new and

currently lucrative Forsage variants, some now on blockchains other than Ethereum.

We hope that our findings can help stem this spread. In addition to providing in-

sights that may serve to educate potential victims, our study demonstrates highly

concentrated earnings among top-earning accounts, suggesting that targeted block-

listing could be an effective step to slow the growth of Forsage and contracts like

it.



Chapter 7

Conclusion

This thesis has presented techniques to empirically analyse privacy and crime in

blockchain technologies: analysing the privacy and usage of Zcash; tracking trans-

actions moving across chains; and studying a high profile and ongoing smart-

contract pyramid scheme, Forsage.

In Chapter 4 we presented an analysis of privacy and measurements on Zcash

- a privacy-focused cryptocurrency forked from Bitcoin. Our analysis demonstrated

that a user’s privacy when interacting with the shielded pool is greatly determined

by the actions of the surrounding users. User addresses can be clustered using

known and novel heuristics. The hacker collective, TheShadowBrokers, used Zcash

as one resource to sell vulnerabilities and tools. This chapter offers one of the first

academic insights into the working of this privacy coin, demonstrating that privacy

coins do not alleviate the anonymity risks demonstrated in non-privacy cryptocur-

rencies.

We then addressed the issue of cross-currency tracking in Chapter 5. We exhib-

ited working examples of using our novel heuristics to follow coin ownership across

different cryptocurrencies and examined and clustered entities within the ecosys-

tem. This concluded with case studies, revealing that multiple scammers used the

system to move their funds, and presenting measurements to showcase how privacy

coins are used in the system.

Finally, in Chapter 6 we presented an in-depth measurement study of a smart-

contract pyramid ecosystem that processed $267 million USD worth of Ethereum.
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The study was conducted using a multi-faceted approach. We revealed the inner

workings of one of the obfuscated smart-contracts, measured the profits and losses,

revealed the broadness of the global marketing scheme, identified the failed efforts

by law enforcement to shutdown the enterprise, and proposed potential countermea-

sures.

7.1 Future Directions

In this section, we list some interesting areas of research that could be explored to

continue research efforts in this field.

Anonymity of Zcash The research in Chapter 4 was conducted between 2017 and

2018. As previously mentioned, the developers have since made multiple changes

to Zcash, such as improvements to the underlying cryptography which includes

additions of new shielded pools. In addition, they have given grants to external

developers to create user friendly mobile wallets which allow transactions with the

shielded pool. Future research might look at potentially repeating our work to iden-

tify whether the ecosystem has changed and whether the analytics upon the shielded

pool still work.

Researching Scams In Chapter 6 we focused our analysis on deconstructing the

Forsage matrix contract. The platform has since expanded their offerings with ad-

ditional schemes called xGold and into the Binance USD platform with xXx. Future

research on pyramid schemes could extend our work and analyse the inner workings

of these new schemes.

Privacy with Taproot Taproot [156] is an upgrade in Bitcoin that is expected to

launch in November 2021. As one of the first upgrades to be approved by miners in

over four years, its aim is to achieve better transaction privacy and efficiency, and

to improve the potential for Bitcoin-based smart contracts. A new discussion [6]

reveals that this update may not alter the current effectiveness of clustering, how-

ever, it will create new opportunities for new clustering heuristics to be applied to

Taproot-specific scripts.
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7.2 Closing Thoughts
We have concluded that heuristics-based approaches can be applied to analysing

privacy and crimes in blockchain-based systems. We demonstrated that privacy-

focused cryptocurrencies do not alleviate previous privacy risks and that address

tracking and clustering is still possible in these ecosystems. Cross-chain payment

systems do not act as a shield against preventing tracking of payments. Those in-

volved in illicit activities in cryptocurrencies can, to some extent, have their trans-

actions analysed and tracked. The methodologies described in this thesis can be

used by agencies in order to detect crime, and by developers to test and improve the

privacy of payment systems.
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